
NRL Memorandum Report 5502
December 31, 1984

Interface Specifications for the
SCR (A-7E) Extended Computer Module

by

David Lorge Parnas
Kathryn Heninger Britton

David M. Weiss
Paul C. Clements

Naval Research Laboratory
Washington, D. C.

EC.INTRO: Introduction

1. Overview

The Extended Computer (EC) is a computing machine partially implemented in software. It was
designed as part of the Software Cost Reduction (SCR) project at the Naval Research Laboratory. The design
goals are 1) code portability, 2) abstraction from computer hardware idiosyncracies, 3) more easily understood
code, and 4) sharing of solutions to common machine dependent coding problems. The Extended Computer is
designed to be efficiently implemented on avionics computers such as the IBM 4PI TC-2.

The Extended Computer has the following features:

- Extensible addressing. There is no syntactic limit to the amount of memory that can be addressed. The
actual memory size is a parameter that is set at system-generation time.

- Uniform data access. Hardware addressing techniques, such as use of base and link registers, are hidden
from programmers.

- Uniform subprogram access. All subroutines are invoked in a uniform manner; linkage mechanisms are
hidden from users.

- Uniform input/output. Variations in I/O operations are hidden. All input (output) data items are read
(written) using the same statements.

- Uniform event signalling. The difference between hardware interrupts and software-detected events is
hidden. All interrupt handling is hidden.

- Data types. Data types representing reals, bitstrings, and time intervals are provided together with the
necessary conversion functions. Data representations are hidden. Hardware arithmetic and bitstring
operations are hidden.

- Parallel processes. Programs can be written as a set of cooperating sequential processes. The number of
hardware processors and their scheduling are hidden.

- State control. Computer state transitions among various states (including off, operating, and failed) are
signalled to the user programs. The mechanics of state transitions are hidden.

- Built-in test. Diagnostic programs to test the integrity of memory and the correct operation of the
hardware are built-in. The tests and evaluation criteria are hidden.

- Exception handling. Both a development version, with extensive checks for programming errors, and a
production version are available. Programs that cause no undesired events [WUER76] on the develop-
ment version will compute the same values on both versions. The version can be selected at system-
generation time.

The Extended Computer has been designed to hide the interface characteristics of a computer with capa-
bilities similar to those of the IBM 4PI/TC-2. Were the present A-7 computer to be replaced by one with dif-
ferent capabilities, we would shift some responsibilities to/from other parts of the software. For example, if the
new computer used an external device for timing, the implementation of the timeint data type would become a
part of the device interface modules. Or, if the new computer included a capability for angle implementation,
the machine-independent implementation of an angle data type would be replaced by a machine-dependent
module that was part of the EC, but with the same interface as the present angle data type. Of course, under
such unlikely circumstances, the appropriate documentation (such as [REQ], [MG], and [AT], as well as this
document) would be changed to remain consistent with the new hardware. If the EC design were to be used in
an application that did not require all of its capabilities, a compatible subset could be used.

We recommend that this procedure be followed by anyone maintaining this system, and by those who are
designing other systems using a similar approach.

EC.INTRO Introduction

EC.INTRO Introduction

2. Conventions of this document

This document specifies the user interface to the Extended Computer. The contents, form, and notation
are in accordance with the guidelines given in [SO], with the following additions.

- Events signalled by incrementing a semaphore: The EC signals events by incrementing semaphores.
The semaphores and the event that each represents are listed in a separate section of each submodule
interface. The semaphores are built-in (users need not declare them), and are given an initial value of
zero at system generation time.

For each built-in semaphore S, there is a built-in (i.e., pre-declared) region S_R. The EC signals an event
by performing an +UP+ followed by a +DOWN+ on that semaphore, and both operations occur inside
the corresponding region. Programmers may use that the name of that region in exclusion relations. See
EC.SMPH for information about semaphore operations and EC.PAR.2 for exclusion relations.

- Optional parameters: If a parameter is denoted by "I_OPT" in the access program table, it means that
the corresponding actual parameter may be omitted in an invocation of that program. No EC program
has more than one optional parameter.

3. Input to the Extended Computer

Text input to the EC is partitioned into a non-overlapping sequence of tokens. A token can be

- a name (defined in EC.DATA.3);

- a real or bitstring literal (defined in EC.DATA.3);

- one of the seven punctuation characters < > () [] :

Tokens may not exceed a certain length, specified by #max token length#; %%token too long%% will be
raised if the limit is violated.

A comment is defined by the BNF syntax
comment ::= ‘{’ comment_contents ‘}’
comment_contents ::= empty | comment_unit comment_contents
comment_unit ::= most_ascii | comment
most_ascii ::= any ascii character except ‘{’ or ‘}’

White space is any nonempty sequence of the ASCII characters SP (octal 040), HT (011), NL (012), and
FF (014) occurring outside of tokens and comments.

The input is scanned from beginning to end for tokens. White space and comments are discarded but
may serve to separate two tokens that would otherwise be read as one. The longest possible tokens are recog-
nized; the shortest possible comments are recognized.

Syntactic input to the EC consists of a sequence of invocations of system- generation-time access pro-
grams. The syntax of invocation is given in EC.PGM.3.2.

Violation of any of the above rules will result in the undesired event %%syntax error%%.

The program that produces target machine code from input to this module is called ect; its user interface
is described in Chapter TT.TRANS of [TT].

3-ii

CHAPTER 1

EC.DATA: Data Manipulation Facilities

1. Introduction

1.1. Entities

The Extended Computer provides literals, constants, and variables. We refer to these as entities.
Literals are values appearing in programs. Constants have names and values; run-time programs can read the
values but not change them. Variables have names and values; the values can be read or written by run-time
programs. All constants and variables may be accessed from any process of the program. It is possible to
declare arrays of variables or constants. An element of an array may be used as an individually declared
entity of the same type. Users are given the facility for providing information to the Extended Computer
about the relative speeds with which declared entities should be accessed.

1.2. Types

Types are classes of entities. The Extended Computer provides a hierarchy of types; an entity is either
a program, numeric, bitstring or pointer. Numeric types are characterized by range and resolution. Bitstring
types are characterized by length. The value of a pointer is another entity. Pointer types are characterized by
the type of entity to which members of the pointer type may refer. The value of a characteristic for an entity
is called an attribute. Some entities are allowed to change their type at run-time.

For a particular numeric type, every numeric value between the upper bound and lower bound
(inclusive) has a representative in its type. Any representative will differ from its nearest neighbors by no
more than the resolution of the type, and no numeric value will differ in value from its representative by
more than half the resolution. The values referred to in this specification are the representative values.

For some numeric types, users may require that the representatives include exact multiples of the reso-
lution between the lower and upper bounds, inclusively.

A type class is a type that contains entities with different behavior. A specific type (also called spec-
type) is a subclass of a type class in which all variables have identical behavior; i.e., they can take on the
same set of values and one may perform the same operations on them with the same results. The behavior of
the program will not change if two variables of the same specific type are interchanged throughout the pro-
gram. For each type class, there are any number of specific types.

Figure 1 provides an overview of the EC data types by showing the Extended Computer’s type classes.
A sub-type is indented beneath its containing types. Terminal nodes (those entries with no sub-types)
represent type classes in which specific types may be declared.

The Extended Computer provides three type classes illustrated in Figure1, but not described in this
chapter. They are semaphore, timer, and program, whose operations are described respectively in
EC.SMPH, EC.TIMER, and EC.PGM.2.

EC.DATA Data Manipulation Facilities

EC.DATA Data Manipulation Facilities

iii

bitstrings

iii

programs

iii

integers
reals iiiiiiiiiiii

nonintegers
iiiiiiiiiiiiiiiiiiiiiiiiiiiiic

c
c
c
c

time intervals

All numerics iiiiiiiiiiiiiiiiiiiiiiiiiiiii

semaphores

iiiiiiiiiiiiiiiiiiiiiiiiiiiii

timers

iii

data pointers

pointers iiiiiiiiiiiiiiiiiiiiiiiiiiiii

program pointers
iiic
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

Figure 1 -- EC Data Types

1.3. Scalar literals

A scalar literal is an unnamed ascon. Formats for writing literal values for a particular typeclass are
specified in the type definition for that class in EC.DATA.3. Formats for using literals as operands to access
programs are given in EC.DATA.2.4.

Numeric literals will be represented with at least the precision implied by their written representation.
Integers will be represented exactly.

3-2

EC.DATA Data Manipulation Facilities

2. Interface overview

2.1. Declaration of specific types

Specific types must be declared, given a name, and assigned attributes. The EC allows users to choose
among different versions of the implementation for each type; each version is especially efficient for per-
forming certain operations. The versions, and the advantages and disadvantages of each, are specified in
Appendix F.

hhProgram Parameters Description Undesired events

++DCL_TYPE++ p1: name; I name of new type
p2: typeclass; I containing type class
p3: attribute; I attributes of type
p4: version; I implementation version

%%name in use%%
%%inappropriate attributes%%
%%illegal length%%
%%malformed attributes%%
%%range too great%%
%%version characteristic exceeded%%
%%res too fine%%
%%undefined name%%

-- Effects --

A specific type that is a member of type class p2 and implementation version p4 is declared to have
identifier p1. All entities and arrays of this specific type will have the attributes given by p3. If p4 is not a
version associated with the given type, as specified in Appendix F, then the EC implementation will use an
appropriate version of its own choosing. The identifier can be used as the spectype (p2) parameter in calls to
++DCL_ENTITY++, ++DCL_ARRAY++, and ++DCL_TYPE_CLASS++ that follow the declaration.

The Extended Computer gives users a way to define a type class as a !!list!! of specific types, for use in
declaring entities.

hhProgram Parameters Description Undesired events

++DCL_TYPE_CLASS++ p1: name; I name of list
p2: type_list; I

%%name in use%%
%%undefined name%%

-- Effects --

The name p1 can be used in place of the !!list!! given in p2.

2.2. Declaration and ranking of data sets

The EC requires users to assign entities to data sets. The user is then allowed to specify a partial ord-
ering on the data sets to determine speed of access to the sets’ members. The rankings apply to sections of
code. Significant performance improvements are possible if the entities used in a section of code belong to a
data set that is highly ranked.

hhProgram Parameters Description Undesired events

++DCL_DATA_SET++ p1: name; I name of data set

3-3

EC.DATA Data Manipulation Facilities

%%name in use%%

++RANK_DATA_SET++ p1: data-set-reln; I
%%undefined name%%

-- Effects --
++DCL_DATA_SET++ Declares p1 to be the name of a data set, and allows that name to be used as p5

of ++DCL_ENTITY++ and/or p6 of ++DCL_ARRAY++.

++RANK_DATA_SET++ Defines a partial ordering on all data sets; if (A B) is in the !!relation!! given by
p1, then data set A has a rank no lower than that of data set B. Data sets not
named in p1 have an arbitrary rank lower than any set named in p1. (A special
case of this is when the data-set-reln is empty; in this case all data sets are given
an arbitrary rank by the EC.) The ranking applies until the next textual
occurrence of ++RANK_DATA_SET++. This program’s only visible effects
are to alter the performance of the user’s program, as specified in Appendix G.

2.3. Data declarations

Variables, constants and arrays must be declared before they are used. The declaration must specify
the name of the new entity or array, a previously declared specific type (one of the terminal nodes on the tree
of Figure 1), whether the entity or array is constant or a variable, and an initial value.

hhProgram Parameters Description Undesired events

++DCL_ENTITY++ p1: name; I entity name
p2: type_list; I specific types
p3: convar; I when writeable?
p4: see below; I initial value
p5: data_set; I_OPT

data set name
%%literal too big%%
%%name in use%%
%%undefined name%%
%%unknown initial value%%
%%untyped literal%%
%%varying constant%%
%%wrong init value type%%

-- Parameters --

p4 must be given by a constant or a !!typed literal!! or the built-in identifier UNDEF. If p2 contains
only one specific type, p4 may also be given by a simple literal. The type of a !!typed literal!! or constant
must match one of the specific types named (or referred to) in p2. The value of a simple literal must be in the
domain of the type named in p2.

p2 may only contain or refer to more than one specific type if p3=VAR.

-- Effects --

An entity with identifier p1 and initial value p4 is declared. If p4 is given by a constant or !!typed
literal!!, p1 assumes its spectype. If p2 contains more than one type, the entity is allowed to subsequently
assume the attributes of any of the types named in p2; see the "Operand descriptions" section for more infor-
mation. If p3=VAR, the entity may be used as a !!destination!! in a subsequent operation. The entities that
have been declared may be used as operands in the programs that follow. The entity is assigned to data set
p5 (or to none if p5 is omitted). If p4=UNDEF, a value must be assigned to this entity before it is used as an I
or IO operand to an EC access program. If p2 is given by a single type that has the EXACT_REP attribute,
and p4 is given by a simple literal whose value is an exact integer multiple of the type’s resolution, then p4

3-4

EC.DATA Data Manipulation Facilities

will be represented exactly as given.

2.3.1. Declaration of arrays

hhProgram Parameters Description Undesired events

++DCL_ARRAY++ p1: name; I array name
p2: type_list; I element type(s)
p3: convar; I when writeable?
p4: array-init; I initial values
p5: indexset; I array indices
p6: data_set; I_OPT data set name

as for ++DCL_ENTITY++
plus:

%%array too big%%
%%wrong init value

size%%
%%illegal index set%%

-- Parameters --

There must be as many elements of the array-init as there are elements in the array. Each element
must meet the same restrictions as the initial value p4 in ++DCL_ENTITY++.

p2 may only contain or refer to more than one specific type if p3=VAR.

-- Effects --

A one-dimensional array with identifier p1, initial value p4, and index set p5 is declared. Its ele-
ments may assume the attributes of any of the types named in p2. If p3=VAR, the elements of the array
may be used as !!destination!!s in subsequent operations. The array is declared to belong to data set p6 (or
to none if p6 is omitted). Elements of the array can be used wherever an entity of the same specific type
could be used. If the spectype of the array has the EXACT_REP attribute and a simple literal given as the
initial value of one of its elements is an exact integer multiple of the spectype’s resolution, then it will be
represented exactly.

3-5

EC.DATA Data Manipulation Facilities

2.4. Operand descriptions

2.4.1. Individual parameters

The syntax for !!actual parameter!!s for all EC run-time access programs is shown below. Terms in
italics are non-terminals. Other terms are terminals, or defined elsewhere in this document. Brackets
shown are required.

parameter ::= literal
| entity

(for scalar constants or variables, in which
case the name of the entity is written)

| < keyword info parameter >

The UEs %%literal too big%% and %%res too fine%% apply to the first form.

The UEs %%undefined name%% and %uninitialized entity% apply to the second form.

The third form is discussed in detail below.

2.4.1.1. Qualified parameters

Typed literals

keyword ::= LIT
info ::= spectype
parameter ::= literal

The spectype must be previously-declared or built-in, and include the value of the literal in its
range. If the spectype has the EXACT_REP attribute and the value of the literal is an exact integer mul-
tiple of the spectype’s resolution, then the !!typed literal!! will be represented exactly. Otherwise, it
will be represented by a value within one-half of the type’s resolution. Unless otherwise specified, the
use of !!typed literal!!s is optional, but may increase the efficiency of the user’s program. See Appen-
dix G.

Applicable UEs: %%undefined name%%, %%wrong type for literal%%

Variable with varying attributes:

keyword ::= ATTR
info ::= spectype

The attributes must be specified by naming a previously-declared specific type. The parameter
refers to the variable. This form must be used when that variable was declared with more than one spec-
type in its type_list, but is legal even when the variable was only declared to belong to a single spec-
type. The specific type must be one that was named, or included in a typeclass that was named, in the
type_list of the variable when it was declared. This form of operand is also legal (but not required) for
constants, as long as the spectype named is the one that the constant belongs to.

Applicable UEs: %%attribute not given%%, %%illegal sysgen parm%%, %%inappropriate attri-
butes%%, %%undefined name%%, %wrong attributes%

Array elements:

keyword ::= EL
info ::= parameter (specifying the index of the array element)

3-6

EC.DATA Data Manipulation Facilities

The parameter must refer to an array. The index must evaluate to an integer. The element
specified is chosen before the operation in which the parameter appears is performed.

Applicable UEs: %illegal array index%, %%illegal sysgen parm%%, %%index not allowed%%

Flooring/rounding/truncating numeric results:

keyword ::= FLOOR | ROUND | TRUNC
info ::=

For this form, the parameter must refer to a variable with the EXACT_REP attribute; it may take
any form in this section except the FLOOR or ROUND or TRUNC form. Let x be the computed result
of the operation in which this operand form appears. If x is an integer multiple of the variable’s current
!!resolution!! then x is stored into the variable given as the parameter. Otherwise, let x

a
and x

b
be the

two integer multiples of the variable’s current !!resolution!! closest to x, such that x
a

< x and x
b

> x.

FLOOR has the effect of making x
a

the result of the operation. ROUND has the effect of making
the result of the operation whichever one of x

a
and x

b
is closest to x, or either one if they are equidistant.

TRUNC has the effect of making the result of the operation whichever one of x
a

and x
b

has the smallest
absolute value.

Applicable UEs: %%illegal round/trunc%%, %%illegal sysgen parm%%

Subrange assertions:

keyword ::= RANGE
info ::= one or more !!interval!!s

Any numeric I or IO !!actual parameter!! may be given using this form; the parameter must refer
to variable. This form of operand asserts that, at the time of the call, the parameter will be within the
union of the given !!interval!!(s). If the parameter is in turn given using a subrange assertion, that
asserts that the both assertions hold simultaneously; i.e., that the value is in the intersection of the asser-
tions’ !!interval!!s.

Anyplace a numeric !!destination!! may be used, an operand of this form may be used; the
parameter must be omitted. This form asserts that the result of the operation will be within the union of
the !!interval!!(s). If more than one subrange assertion appears in a !!destination!! list (see next sec-
tion), it asserts that all of them hold simultaneously; i.e., that the result is in the intersection of the indi-
vidual assertions’ !!interval!!s.

Applicable UEs: %range exceeded%, %%improper subrange assertion%%

Using pointers:

keyword ::= DEREF
info ::=

Anywhere that an entity or array may be used, the reference may be replaced by this form of
operand. The parameter must refer to a previously-declared entity of the PTR typeclass; it may not take
the FLOOR/ROUND/TRUNC or RANGE form. This has the same effect as using the entity or array
that is the current value of the pointer.

Applicable UEs: %%illegal ptr target%%, %%illegal sysgen parm%%

Operands that do not change the value of any entity:

keyword ::= NOSTORE
info ::= spectype
parameter ::=

3-7

EC.DATA Data Manipulation Facilities

This form may be used as a !!destination!! in a run-time EC access program that computes a real,
timeint, or bitstring result of the named spectype. It has the effect of not storing the computed result
into any entity. The value can either be used as a !!source!! in a succeeding run-time EC access program
as described below, or the computed value can be used to determine the exit of the program (see
EC.PGM.1), but not both. This form may not be used more than once in a destination list (see below).
To use it as a !!source!! in the succeeding operation, the following conditions must be met:

- the !!command!! using it as a !!source!! immediately follows the !!command!! that used the form
as a !!destination!!;

- the spectype given to the !!source!! in the second !!command!! is the same as that given to the
!!destination!! in the first !!command!!;

- the first !!command!! has a null !!exit connector!!; and

- the second !!command!! has a null !!name tag!!.

If this form of operand is used as a !!source!! but one or more of the above conditions is not met,
a UE will be raised.

Applicable UEs: %%illegal sysgen parm%%, %%inconsistent NOSTORE use%%, %%undefined
name%%

2.4.2. Lists of destinations

Any !!actual parameter!! given for an O (output) parameter in an EC access program may be given
as a !!list!! of operands. Each element of the !!list!! must be suitable for use as a destination of the opera-
tion. All of the parameters will receive the same value (subject to any FLOOR/ROUND/TRUNC effects);
the assignments may be made in an arbitrary order or simultaneously.

2.4.3. Lists of operands

Any !!actual parameter!! given in an !!invocation!! of an EC access program may be given as a
!!list!! of !!actual parameter!!s. The !!list!!s must all have the same number of elements. Corresponding
elements of the !!list!!s must be suitable as individual !!actual parameter!!s for the operation. Such a con-
struct specifies a set of operations, with each set of corresponding !!list!! elements corresponding to one
operation. The operations may be done in any order or simultaneously. The set of operations may be
interrupted by a parallel process between any two individual operations. An element of a !!list!! given for
an O parameter may itself be a !!list!!, as specified in EC.DATA.2.4.2.

Applicable UEs: %%list mismatch%%

3-8

EC.DATA Data Manipulation Facilities

2.5. Transfer operations

hhProgram Parameters Description Undesired events

+SET+ p1: see below; I !!source!!
p2: see below; O !!destination!!

%inconsistent lengths%
%range exceeded%

++SET++ p1: see below; I !!source!!
p2: see below; O !!destination!!

%%inconsistent lengths%%
%%range exceeded%%

-- Parameters --

p1 and p2 must be both real, or both timeint, or both bitstrings of the same length, or both pointers of
the same specific type.

-- Effects --

p2 = the value of p1 before the execution of the program.

2.6. Numeric operations

2.6.1. Numeric comparison operations

hhProgram Parameters Description Undesired events

None
+EQ+
+NEQ+
+GT+
+GEQ+
+LT+
+LEQ+ p1: see below; I !!source!!

p2: see below; I !!source!!
p3: boolean; O !!destination!!
p4: see below; I !!user threshold!!

+MAX+
+MIN+ p1: see below; I !!source!!

p2: see below; I !!source!!
p3: see below; O !!destination!!
p4: see below; I !!user threshold!!

-- Parameters --

p1, p2, (p3 for +MAX+ and +MIN+), and p4 must be either all real types or all timeint types.

-- Effects --
+EQ+ p3 = (p1 = p2) †
+NEQ+ p3 = NOT (p1 = p2) †
+GT+ p3 = p1 - p2 is positive and NOT (p1 = p2) †
+GEQ+ p3 = (p1 = p2) † OR (p1 - p2 is positive)
+LT+ p3 = p1 - p2 is negative and NOT (p1 = p2) †
+LEQ+ p3 = (p1 = p2) † OR (p1 - p2 is negative)

3-9

EC.DATA Data Manipulation Facilities

+MAX+ p3 = p1 if +GT+(p1,p2, ,p4) returns $true$ and p3 = p2 otherwise.
+MIN+ p3 = p1 if +LT+(p1,p2, ,p4) returns $true$ and p3 = p2 otherwise.

2.6.2. Numeric calculations

hhProgram Parameters Description Undesired events

+ABSV+
+COMPLE+ p1: see below; I !!source!!

p2: see below; O !!destination!!
%range exceeded%

+ADD+
+MUL+
+SUB+
+SIGN+ p1: see below; I !!source!!

p2: see below; I !!source!!
p3: see below; O !!destination!!

hh

+DIV+ p1: see below; I !!source!!
p2: see below; I !!source!!
p3: boolean; I check for success?
p4: see below; O !!destination!!

%range exceeded%
%divide by zero%
%%variable parm%%

-- Parameters --
+ADD+
+ABSV+
+COMPLE+
+SIGN+
+SUB+ Either

(1) all operands real, or
(2) all operands timeint

+MUL+ Either

(1) all operands real, or
(2) one of p1 or p2 real, the other operands timeint

+DIV+ Either

(1) p1,p2 and p4 real, or
(2) p1 and p2 timeint and p4 real, or
(3) p1 timeint, p2 real, p4 timeint.

p3 must be given by a literal or ascon.

-- Effects --
+ABSV+ p2 = magnitude(p1)
+ADD+ p3 = p1 + p2
+COMPLE+ p2 = - p1

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh
† Definition of equality: absv(p1 - p2) ≤ !!user threshold!!.

3-10

EC.DATA Data Manipulation Facilities

+MUL+ p3 = p1 × p2
+SIGN+ p3 = sign(p1) × absv(p2), where sign(0) is defined to be 0.
+SUB+ p3 = p1 - p2
+DIV+ If p4 is given as <RANGE <LT ub> p4> (or <RANGE <LE ub> p4>) AND absv(ub) ≤

(or <) absv(p1÷p2) then:
(a) if p3=$true$ then sign(p4)=sign(p1÷p2), magnitude of p4 is undefined, and the pro-
gram referred to by the built-in program pointer DIV_FAIL is invoked;
(b) if p3=$false$ then p4 is undefined.
Otherwise, p4 = p1÷p2.

-- Built-in Objects --
DIV_FAIL A built-in program pointer variable whose attribute is (E1 SCALAR) (defined in

EC.PGM.2.3). DIV_FAIL has no initial value; %uninitialized entity% applies.

2.6.3. Operations converting other types to reals

hhProgram Parameters Description Undesired events

%range exceeded%
+R_BITS_2COMP+
+R_BITS_POSITIVE+
+R_BITS_SIGNMAG+

p1: bitstring; I !!source!!
p2: integer; I !!radix pt ident!!
p3: real; O !!destination!!

+R_BITS_BCD+ p1: bitstring; I !!source!!
p2: integer; O !!destination!!

+R_TIME_HOUR+
+R_TIME_MIN+
+R_TIME_MS+
+R_TIME_SEC+ p1: timeint; I !!source!!

p2: real; O !!destination!!

-- Effects --
+R_BITS_2COMP+ p3 = real value equivalent to p1 assuming that bitstring p1 is a two’s complement

representation [ADP, page 37] of the number, with the radix point specified by
p2.

+R_BITS_BCD+ p2 = integer value equivalent to p1, assuming that bitstring p1 represents a posi-
tive number using the "8421" or "direct binary coding" BCD representation
scheme [ADP, page 12]. If the length of p1 is not 0 modulo 4, this operation will
produce a result as if it were padded on the left with 0:B so that its length is 0
modulo 4.

+R_BITS_POSITIVE+ p3 = real value equivalent to p1 assuming that bitstring p1 is the base 2 represen-
tation of a positive number, with bit 0 the most significant bit, and the radix point
is specified by p2.

+R_BITS_SIGNMAG+
p3 = real value equivalent to p1 assuming that bitstring p1 is a sign magnitude
representation of the number, with bit 1 the most significant bit of the magnitude,
bit 0 the sign bit, and the radix point specified by p2.

3-11

EC.DATA Data Manipulation Facilities

+R_TIME_HOUR+ p2 = a real value giving the time p1 in hours.

+R_TIME_MIN+ p2 = a real value giving the time p1 in minutes.

+R_TIME_MS+ p2 = a real value giving the time p1 in milliseconds.

+R_TIME_SEC+ p2 = a real value giving the time p1 in seconds.

2.6.4. Operations converting to time intervals

hhProgram Parameters Description Undesired events

+T_REAL_MS+
+T_REAL_SEC+
+T_REAL_MIN+
+T_REAL_HOUR+ p1: real; I !!source!!

p2: timeint; O !!destination!!
%range exceeded%

-- Effects --
+T_REAL_MS+ p2=timeint value equivalent to p1 assuming p1 to specify the time interval in mil-

liseconds.

+T_REAL_SEC+ p2=timeint value equivalent to p1 assuming p1 to specify the time interval in
seconds.

+T_REAL_MIN+ p2=timeint value equivalent to p1 assuming p1 to specify the time interval in
minutes.

+T_REAL_HOUR+ p2=timeint value equivalent to p1 assuming p1 to specify the time interval in hours.

2.7. Operations for the bitstring type class

Bits in all bitstring types are numbered from 0 upward. We refer to bit 0 as the leftmost bit and a shift
of information from higher numbered bits to lower numbered bits as a left shift.

2.7.1. Bitstring comparison operations

hhProgram Parameters Description Undesired events

+EQ+
+NEQ+ p1: bitstring; I !!source!!

p2: bitstring; I !!source!!
p3: boolean; O !!destination!!

None

-- Effects --
+EQ+ p3 = (p1 = p2) †
+NEQ+ p3 = NOT (p1 = p2) †

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh
† Definition of equality: length(p1) = length(p2) and for all i: 0 ≤ i < length(p1), bit i of p1 = bit i of p2

3-12

EC.DATA Data Manipulation Facilities

2.7.2. Bitstring calculation operations

hhProgram Parameters Description Undesired events

+AND+
+CAT+
+MINUS+
+NAND+
+OR+
+XOR+ p1: bitstring; I !!source!!

p2: bitstring; I !!source!!
p3: bitstring; O !!destination!!

%inconsistent lengths%

+NOT+ p1: bitstring; I !!source!!
p2: bitstring; O !!destination!!

+SHIFT+ p1: bitstring; I !!source!!
p2: integer; I shift length
p3: bitstring; O !!destination!!

hh

+REPLC+ p1: bitstring; I !!source!!
p2: integer; I source start position
p3: integer; I dest’n start position
p4: integer; I length
p5: bitstring; I background !!source!!
p6: bitstring; O !!destination!!

%nonexistent position%
%inconsistent lengths%

-- Effects --
+AND+ p3 = p1 AND p2

+CAT+ p3 = p1 followed by p2

+MINUS+ p3 = p1 AND (NOT p2)

+NAND+ p3 = NOT (p1 AND p2)

+NOT+ p2 = NOT p1

+OR+ p3 = p1 OR p2

+REPLC+ p6[p3:p3+p4-1] = p1[p2:p2+p4-1] and p6[all other bits] = corresponding bits in p5

+SHIFT+ p3 = shift of p1 by p2 positions to the right (or -p2 positions to the left). The vacated bits
are set to "0:B".

+XOR+ p3 = (p1 AND (NOT p2)) OR (p2 AND (NOT p1))

2.7.3. Operations converting to bitstring

hhProgram Parameters Description Undesired events

3-13

EC.DATA Data Manipulation Facilities

%left truncation%
+B_REAL_2COMP+
+B_REAL_POSITIVE+
+B_REAL_SIGNMAG+ p1: real; I !!source!!

p2: integer; I !!radix pt ident!!
p3: bitstring; O !!destination!!

+B_REAL_BCD+ p1: integer; I !!source!!
p2: bitstring; O !!destination!!

-- Effects --
+B_REAL_2COMP+ p3 = two’s complement representation of p1, such that the radix point of the

resulting bitstring is positioned according to p2. Bit 0 of p3 will be the most
significant. The operation truncates all bits beyond the highest numbered bit in
the !!destination!! bitstring.

+B_REAL_BCD+ p2 = bitstring representation of ABSV(p1), using the "8421" or "direct binary
coding" BCD representation scheme [ADP, page 12].

+B_REAL_POSITIVE+ p3 = bitstring representation of ABSV(p1), such that the radix point of the
resulting bitstring is positioned according to p2. Bit 0 of p3 will be the most
significant bit. The operation truncates all bits beyond the highest numbered bit
in the !!destination!! bitstring.

+B_REAL_SIGNMAG+ p3 = sign magnitude representation of p1, such that the radix point of the result-
ing bitstring is positioned according to p2. Bit 0 will be the sign bit and bit 1
the most significant bit of the magnitude. The operation truncates all bits
beyond the highest numbered bit in the !!destination!! bitstring.

2.8. Operations for the pointer type class

Except for the transfer operations specified in EC.DATA.2.5, there are no operations provided for
pointers.

3. Local type definitions

array-init A !!list!! of initial values for an array.

attribute An attribute for a bitstring specifies length, and must be given by a real entity whose value is a
positive integer.

A real or timeint attribute is a !!list!!:

(lower-bound upper-bound !!resolution!! EXACT_REP)

The fourth element is optional. The lower bound and upper bound are often collectively called
range (see !!range!!). If a type has the EXACT_REP attribute, then results to be stored into a
variable of that type are allowed to be floored/truncated/rounded (at the discretion of the user) to
a value that is an integer multiple of the variable’s current !!resolution!!. !!range!! and !!resolu-
tion!! for reals must given by real entities, and by timeint entities for timeints.

A pointer attribute is either

(spectype SCALAR) or (spectype ARRAY).

where spectype is the name of a previously-declared or built-in specific type. A pointer with the
first attribute can refer to scalars of the given spectype (and only that spectype); a pointer with

3-14

EC.DATA Data Manipulation Facilities

the second attribute can refer to arrays of that spectype (and only that spectype).

Attributes for other typeclasses are given in EC.PGM.2, EC.SMPH, and EC.TIMER.

bitstring An ordered list of values, each value represented by 0 or 1. The number of such values is called
the length of the bitstring. A bitstring literal is written as a string of 0s and 1s suffixed by :B.
E.g., 0:B is a bitstring of length 1 and 1011:B is a bitstring of length 4. See also "boolean".

boolean Bitstring of length 1. Where convenient, $true$ may denote 1:B, $false$ may denote 0:B.

convar Either ASCON (meaning constant that will not change without reassembly) or LOADCON
(meaning constant that may be changed by a memory loading device while the program is not
running) or VAR (meaning variable).

data_set A group (previously declared by ++DCL_DATA_SET++) of user-defined entities that the user
may rank according to desired access speed.

data-set-reln A partial ordering on the set of all data sets, given as a !!relation!!.

indexset A set of permissible indices. Only sets of contiguous integers may be created. The set must be
specified in the following way:

(si li)

where si denotes the smallest index and li denotes the largest index. Both si and li must be
integer ascons or literals. For example, (7 12) indicates a six-element array indexed by the
integers from 7 through 12. (-4 -4) indicates a one-element array whose index is -4.

integer A member of the real typeclass that has the EXACT_REP attribute and whose !!resolution!! = 1.

name An identifier for an object. The syntax is:

name ::= namehead | namehead nametails
namehead ::= letter | bracketedname
nametails ::= nametail | nametails nametail
nametail ::= namehead | digit | ’_’ | ’-’ | ’.’
leter ::= ’A’ | ... | ’Z’ | ’a’ | ... | ’z’
digit ::= ’0’ | ... | ’9’
bracketedname ::= ’$’ not(’${}’) ’$’

| ’/’ not(’/{}’) ’/’
| ’//’ not(’/{}’) ’//’
| ’+’ not(’+{}’) ’+’
| ’++’ not(’+{}’) ’++’
| ’%’ not(’%{}’) ’%’
| ’%%’ not(’%{}’) ’%%’
| ’#’ not(’#{}’) ’#’

not(’x’) ::= any nonempty sequence of ASCII characters in the range octal
040 through 176 inclusive and not containing a character in the string x.

pointer A type that provides indirect referencing to other declared entities. A pointer literal is given by
<REF x> where x is another non-literal entity or array; x may not be an i/o data item (see
EC.IO).

real An approximation to conventional real numbers. Real literals are denoted in one of the follow-
ing formats:

standard decimal notation: e.g., -112.345, .000234, 127

3-15

EC.DATA Data Manipulation Facilities

exponent notation: decimal number followed by :En, or integer literal followed by :Pn, where n
is an integer. The first means the decimal number multiplied by 10 raised to the n power; the
second means the integer multiplied by 2 raised to the n power.
For example: 1.12345:E2 (=112.345), 2.34:E-4 (=.000234), 1:P4 (=16), -10:P-3 (=-1.25).

spectype An identifier that has been previously declared as a type in a ++DCL_TYPE++ operation, or the
name of a spectype built in to the EC. The latter includes BOOLEAN (representing the built-in
bitstring type boolean), as well as those named in EC.PGM.2 and EC.IO.

timeint Representation of a time interval. Literals of type timeint are denoted by using the name of one
of the real-to-timeint conversion programs of EC.DATA.2.6.4 and a real literal. The form is:

< TIMEINT program-name real >

where real is either a real literal or the name of a real ascon. The value thus specified is that
which would be returned by the named program were it called with the real as the input parame-
ter. For example, <TIMEINT +T_REAL_SEC+ 4.0> denotes a timeint value of 4 seconds.

typeclass Either BITS (meaning bitstring), PTR (meaning pointer), REAL, or TIMEINT (meaning time
interval). Other values are SEMAPHORE (see EC.SMPH), PGM (see EC.PGM.2), and TIMER
(see EC.TIMER).

type_list Either a spectype, or the name of a type_list given as p1 of ++DCL_TYPE_CLASS++, or the
name of a built-in EC typeclass, or a !!list!! whose elements are these things.

version A version name applicable to the specific type being declared. Version names and characteris-
tics are listed in Appendix F.

4. Dictionary

!!destination!!
An O or IO !!actual parameter!! to an EC access program.

!!interval!! A specification of a numeric interval. The syntax is:

!!interval!! ::= < GE value >
| < GT value >
| < LE value >
| < LT value >
| < LIM value1 value2 >
| < LIME value1 value2 >

All values must be given by numeric ascons or literals. The LIM form specifies the conjunction
of <GT value1> and <LT value2> if value1 < value2 and the disjunction otherwise. The LIME
form specifies the conjunction of <GE value1> and <LE value2> if value1 ≤ value2 and the dis-
junction otherwise.

!!list!! A sequence of zero or more elements enclosed in parentheses. There is a shorthand for specify-
ing sequences of elements:

< RPT count !!list!! >

This is equivalent to a !!list!! whose items are the elements of the embedded !!list!! written in
sequence count times; count must be a positive integer ascon or literal.

!!radix pt ident!!
Interpreting the bitstring as a binary real number with bit 0 the most significant bit, 2 raised to
the !!radix pt ident!! power is the significance of the rightmost (highest numbered) bit. For

3-16

EC.DATA Data Manipulation Facilities

instance, a value of zero means that the bitstring represents an integer.

!!range!! The set of values between (and including) the lower bound and upper bound of a numeric data
type.

!!relation!! A set of ordered pairs. In EC, a !!relation!! is specified by giving two !!list!!s; the set of ordered
pairs is that obtained by taking the cross-product of the !!list!!s. The syntax is:

(!!list!! !!list!!)

!!resolution!! The maximum difference between any two consecutive representatives of the values of a real or
timeint data type.

!!source!! An I (input) !!actual parameter!! to an EC access program.

!!typed literal!!
A form of operand in which a spectype is given along with a literal value. See
EC.DATA.2.4.1.1.

!!user threshold!!
A difference that user programs specify for a comparison operation; i.e., two numbers whose
difference is less than or equal to this are considered equal.

!!version 1 characteristic!!
For numeric types of version R1 or T1, the value of [MAX(|lb| + res,|ub + res|) / 2Q log

2
res P] + 1

(where lb, ub, and res are the lower bound, upper bound, and resolution, respectively) of the
type.

For bitstrings of version B1, the length.

5. Undesired event dictionary

%%array too big%%
An array was declared to contain more than #max nbr array elements# elements.

%%attribute not given%%
The <ATTR ... > form of operand specification was not used when an entity declared to belong
to more than one spectype was used as an operand.

%divide by zero%
A user program attempted to divide by zero.

%illegal array index%
The index supplied in an <EL ... > operand is not in the index set of the array.

%%illegal index set%%
The index set of an array is either not in ascending order or given by integer ascons or literals.

%%illegal length%%
The length of a bitstring type is less than one, or greater than the maximum allowed, as given by
a sysgen parameter.

%%illegal ptr target%%
An attempt was made to cause a pointer to point to a literal or to an i/o data item.

3-17

EC.DATA Data Manipulation Facilities

%%illegal round/trunc%%
A user used the <FLOOR ...> or <ROUND ... > or <TRUNC ... > form of an operand for a vari-
able that does not have the EXACT_REP attribute or is not a !!destination!!, or used both forms
in the same operand specification.

%%illegal sysgen parm%%
The user supplied a parameter to a system-generation-time program in one of the following
forms:

<ATTR ... >
<EL ... > when the index was not a constant or literal;
<FLOOR ... >
<ROUND ... >
<TRUNC ... >
<RANGE ... >
<DEREF ... >
<NOSTORE ... >

%%improper subrange assertion%%
Either (a) the <RANGE !!interval!!> form of subrange assertion was used as a !!source!! or IO
!!actual parameter!!, or (b) the <RANGE !!interval!! parameter> form of subrange assertion was
used as a !!destination!!, or (c) the parameter in a <RANGE !!interval!! parameter> operand was
not a numeric variable, or (d) a subrange assertion was given as a destination of an operation
that does not compute a numeric result; or (e) subrange assertions were given as the only ele-
ments of a !!destination!! list; or (f) the intersection form of subrange assertion was given, and
the intersection between at least two of the intervals specified was empty.

%%inappropriate attributes%%
Either (a) in a type declaration, attributes of the wrong typeclass were given; or (b) in a qualified
parameter, attributes were specified by naming a spectype not included in the entity’s declara-
tion.

%inconsistent lengths%
%%inconsistent lengths%%

The length of the result of a bitstring operation differs from the length of the destination vari-
able, or (for +AND+, +MINUS+, +NAND+, +OR+, or +XOR) the lengths of the two !!source!!s
are not the same.

%%inconsistent NOSTORE use%%
A <NOSTORE spectype> operand form either (a) gave a spectype not in the real, bitstring, or
timeint typeclass; (b) appeared more than once in a destination list; (c) was used as a !!source!!
in a statement not immediately following a statement in which it was used as a !!destination!!, or
in a statement with a non-null !!name tag!!; or (d) used as a !!source!! with a spectype not
matching that of the previous statement.

%%index not allowed%%
The <EL ...> form of operand specification was used for an entity that is not an array.

%left truncation%
The most-significant bits are lost in a real to bitstring conversion. This results from the user
specifying a radix point too close to the most significant bit in the destination bitstring.

%%list mismatch%%
Two !!list!!s which were required to have the same number of elements did not.

%%literal too big%%
The value of a literal is greater in magnitude than that allowed for an entity of that typeclass, as

3-18

EC.DATA Data Manipulation Facilities

given by a system generation parameter.

%%malformed attributes%%
The attribute for a real or timeint type was given with a lower bound greater than the upper
bound.

%%name in use%%
In a declaration or ++REGION++ program call, the user has introduced a name that is already in
use as the name of one of the following:

- a built-in object or spectype;
- an EC access program;
- an EC UE;
- an EC reserved word;
- an EC system generation parameter;
- a user-defined spectype, entity, array, data_set, type_class, or region;
- a label in a user-defined program; or
- an entrance or exit in a user-defined program spectype.

%nonexistent position%
A user has specified (1) a start position that does not exist in the bitstring; or (2) a start position
and a length that define a substring not contained in the bitstring.

%range exceeded%
%%range exceeded%%

The value being stored into a variable is outside the !!range!! of the variable’s spectype; or a
variable’s value or the result of an operation was not in the !!interval!! specified in a subrange
assertion.

%%range too great%%
The magnitude of the declared !!range!! exceeds the maximum allowed for that typeclass, as
given by a system generation parameter.

%%res too fine%%
Declared resolution (or implied resolution of a literal) was less than the minimum allowed for
that typeclass, as given by a system generation parameter.

%%undefined name%%
A name has been used which is not a builtin name, nor which has been given an explicit mean-
ing by its used in an EC sysgen program invocation, nor an implicit meaning by its use as a
label.

%uninitialized entity%
An entity or array element that was declared with initial value UNDEF, and not subsequently
given a value, was used as an I or IO operand to an EC access program.

%%unknown initial value%%
A variable has been used as an initial value of a declared entity or array.

%%untyped literal%%
An initial value of an entity or array element belonging to more than one specific type was given
by a simple literal.

%%variable parm%%
User supplied a variable or loadcon for an !!actual parameter!! when an ascon or literal was
called for.

3-19

EC.DATA Data Manipulation Facilities

%%varying constant%%
A user sought to declare a constant as belonging to more than one specific type.

%%version characteristic exceeded%%
The declared type exceeded #max v characteristic#, where v is the version named in the declara-
tion.

%wrong attributes%
The attributes specified for a varying-attribute variable used as a !!source!! are not the same as
for when that variable was most recently used as a !!destination!!.

%%wrong init value size%%
The set of initial values is not the same size as the array.

%%wrong init value type%%
A simple literal used as an initial value is not in the domain of the type of the entity or array ele-
ment being initialized; or a !!typed literal!! or constant given as an initial value is not of a spec-
type in common with the entity or array being declared.

%%wrong type for literal%%
In a !!typed literal!!, the given literal was not in the domain of the named spectype.

6. System generation parameters

#max B1 characteristic#
Type: integer. The bitstring types of version B1, the largest allowable value of the !!version 1
characteristic!!.

#max nbr array elements#
Type: integer. The maximum number of elements allowed to be contained in any array.

#max real ascon#
Type: real.

#max timeint ascon#
Type: timeint. Maximum allowable magnitude for a (real, timeint) ascon or literal.

#max real loadcon#
Type: real.

#max timeint loadcon#
Type: timeint. Maximum allowable magnitude for a (real, timeint) loadcon. The value is greater
than or equal to that of #max real ascon# or #max timeint ascon#, respectively.

#max R1 characteristic#
Type: real. For real types of version R1, the largest allowable value of the !!version 1 charac-
teristic!!.

#max T1 characteristic#
Type: real. For timeint types of version T1, the largest allowable value of the !!version 1 charac-
teristic!!.

#max real range#
Type: real.

#max timeint range#
Type: timeint. Maximum allowable magnitude for the absv(upper bound - lower bound) for a

3-20

EC.DATA Data Manipulation Facilities

(real, timeint) type.

#max token length#
Type: integer. The maximum number of characters allowed in a token.

#min real resolution#
Type: real.

#min timeint resolution#
Type: timeint. Minimum allowable resolution for a (real, timeint) entity.

3-21

CHAPTER 2

EC.IO: Input/Output

1. Introduction

This module implements two types of bitstring entities known as input data items and output data items,
which are used to communicate between the computer and external devices. This interface also includes facili-
ties for i/o used during channel diagnostics. User programs are able to check to see if an external communica-
tion has been successful.

Each data item may be enabled or disabled by user programs. When enabled, communication with the
outside world is possible. The values of input data items may be set by external devices. The values of output
data items are transmitted to external devices. When a data item is disabled, its connection with the outside
world is severed.

Each input data item is characterized as either read-only or read-write. Each output data item is charac-
terized as either write-only or read-write. The rules for their usage are given in the following table. If the
value of an output data item is not initialized before run-time (by use of ++SET++), its value is determined by
this module.

iii
Kind of data item Enabled, disabled? May be used as:ii

disabled !!source!!
read-only ii

enabled !!source!!
input ii

disabled !!source!! or !!destination!!
read-write ii

enabled !!source!!iii
disabled !!destination!!

write-only ii

enabled !!destination!!
output ii

disabled !!source!! or !!destination!!
read-write ii

enabled !!source!! or !!destination!!iiicc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

Within these constraints, an input or output data item may be used exactly as other bitstring variables.

In addition to the input data items described above, some input from the outside world is handled only
through semaphores. For these inputs, which correspond to transient events occurring in external devices, a
semaphore is incremented when the event occurs. There are no corresponding bitstrings for these inputs.

2. Interface overview

2.1. Access programs

hhProgram Parameters Description Undesired events

EC.IO Input/Output

EC.IO Input/Output

+DISABLE+ p1: dataitem; I name of data item
%already disabled%

+ENABLE+ p1: dataitem; I name of data item
%already enabled%

-- Effects --

+ENABLE+ Enables transmission to/from the external environment. If p1 is an input data item, then
external values for this input item will now become available internally as soon as practi-
cable. If p1 is an output data item, the value is now available externally. If the item is
read-write input, use of the item as a !!destination!! in an EC statement is now prohibited
until disabled. At system-generation time, all data items are enabled.

+DISABLE+ Transmission to/from the external environment will be inhibited. If the item is read-
write input, it may now be used as a !!destination!! in an EC statement. If the item is
read-write output, it may now be used as a !!source!! in an EC statement.

2.2. Access programs for IO diagnostics

hhProgram Parameters Description Undesired events

+TEST_AC+
+TEST_CSA+
+TEST_CSB+
+TEST_DC+
+TEST_DIOW1+
+TEST_DIOW2+
+TEST_DIOW3+
+TEST_XACC+
+TEST_YACC+
+TEST_ZACC+

p1: boolean; O !+io test result+!
None

-- Effects --

These programs report the results of input/output hardware diagnostic tests. If the test is performed
periodically or independent of user request, the result given will be that of the most recent test. If the test is
performed on request, the command will initiate the test and report the result when the test is complete. In
addition, the following effects are observable.

+TEST_AC+ This program reports the results of the AC signal converter
check. It may interfere with output, when the data item is

//BRGDEST// //GNDTRK//
//RNGHND// //RNGTEN//
//STEERAZ// //STEEREL//

//RNGUNIT//

3-23

EC.IO Input/Output

+TEST_CSA+ This program reports the results of the cycle-steal channel
A and serial channel 1 check. It may interfere with output,
when the data item is

//ASAZ// //HUDCTL// //USOLCUAZ//
//ASEL// //LSOLCUAZ// //USOLCUEL//
//ASLAZ// //LSOLCUEL// //VERTVEL//
//ASLEL// //MAGHDGH// //VTVELAC//
//ASLCOS// //MAPOR// //XCOMMF//
//ASLSIN// //PTCHANG// //XCOMMC//
//AZRING// //PUACAZ//
//BAROHUD// //PUACEL//
//FLTDIRAZ// //ROLLCOSH//
//FPMAZ//
//FPMEL//

//ROLLSINH//

//YCOMM//

It may interfere with input, when the data item is /LOCKEDON/ or /SLTRNG/.

+TEST_CSB+ This program reports the results of the cycle steal channel
B and serial channel 2 check. It may interfere with output, when the
data item is

//CURAZCOS// //CURAZSIN// //CURPOS//

and input, when the data item is

/ANTGOOD/ /DGNDSP/ /DRFTANG/
/DRSFUN/ /DRSREL/
/ELECGOOD/

/DRSMEM/

+TEST_DC+ This program reports the results of the DC signal converter check.
It may interfere with output, when the data item is

//FPANGL// //GNDTRVEL// //STERROR//

+TEST_DIOW1+
+TEST_DIOW2+
+TEST_DIOW3+

These programs report the results of the checks on discrete
input and output word pairs 1, 2, and 3 respectively. These
programs may interfere with output, when the data item is

//DOW1// //DOW2//

and input, when the data item is

/DIW1/ /DIW2/ /DIW3/
/DIW4/ /DIW5/ /DIW6/
/ANTGOOD/ /DGNDSP/ /DRFTANG/
/DRSFUN/ /DRSMEM/ /DRSREL/
/ELECGOOD/
/SINSDD/

/LOCKEDON/ /SLTRNG/

3-24

EC.IO Input/Output

+TEST_XACC+
+TEST_YACC+
+TEST_ZACC+

These programs report the results of checks on the
accelerometer and torque registers associated with the X, Y,
and Z axes of the IMS respectively. These programs may cause the IMS
to lose its alignment and velocities, and may interfere with output, when
the data item is

//XGYCOM// //YGYCOM// //ZGYCOM//

and input, when the data item is

/XGYCNT/ /XVEL/ /YGYCNT/
/YVEL/ /ZGYCNT/ /ZVEL/

2.3. Built-in objects

The names of all data items are listed in Appendix E of this document. The following undesired
events may occur when data items are used in EC statements:

%read-write violation%
%%read/write-only violation%%

For each data item x, there is a built-in boolean variable x_SUCCESS (e.g., /AOA/_SUCCESS) which
will be $true$ if and only if the last transmission of item x was successful, or the first transmission of x has
not yet occurred. These variables may not be used as !!destination!!s. %%success item as destination%%
applies.

2.4. Events signalled by incrementing a semaphore

For some inputs, an event is signalled (by incrementing a semaphore) when a new value of an input
data item has been transmitted. The event is of the form

@T(!+x ready+!)
where x is the name of the data item.

Some inputs correspond to an event occurring in an external device. When such an event occurs, this
module will signal a corresponding event of the form

@T(!+x occurred+!)
where x specifies the event.

These events and their corresponding semaphores and regions are enumerated in Appendix E.

3. Local type definitions

dataitem The name of any input or output data item. The data items are listed in Appendix E of this
document. The semantics of the data items are given in Chapter 2 of [REQ].

4. Dictionary

Any term of the form
!+x ready+! The named data item is now available for read operations.

Any term of the form

3-25

EC.IO Input/Output

!+x occurred+! The named event has just occurred in an external device.

!+io test result+! true iff the i/o hardware passes built-in test.

5. Undesired event dictionary

%already disabled% A user program has tried to disable a data item already disabled.

%already enabled% A user program has tried to enable a data item already enabled.

%%read/write-only violation%%
A read-only (write-only) data item appears as an output !!actual parameter!! (!!source!!).

%read-write violation%
A program call was executed with a read-write input data item as a !!destination!! when
that data item was enabled.

%%success item as destination%%
A builtin x_SUCCESS variable (x some data item) was used as a !!destination!!.

6. System generation parameters

#max i/o time x# Type: timeint. (where x is replaced by the name of each data item in turn) The maximum
time interval that can elapse between the beginning of the access program that
reads/writes the named item, and the time it takes for the external transmission to take
place.

#nbr fltrec elements# Type: integer. Defined in Appendix E.

#x length# Type: integer. (where x is replaced by the name of each data item in turn) The number of
bits contained in x.

3-26

CHAPTER 3

EC.MEM: Memory Module

1. Introduction

This module provides a means for testing the memory hardware of the target computer, and reports
whether or not the user’s program exceeds the amount of memory available.

2. Interface overview

hhProgram Parameters Description Undesired events

+TEST_MEMORY+ p1: boolean; O !+memory test result+!
None

-- Effects --

Reports the result of the memory diagnostic test. If the test is performed periodically or independent of
user request, the result given will be that of the most recent test. If the test is performed on request, the com-
mand will initiate the test and report the result when the test is complete.

3. Local type definitions None.

4. Dictionary

!+memory test result+! true iff the memory diagnostic test is passed.

5. Undesired event dictionary

%%not enough memory%%
There is not enough memory available in the target computer to store the user’s pro-
gram.

6. System generation parameters None.

EC.MEM Memory module

CHAPTER 4

EC.PAR.1: Process Mechanisms

1.1. Introduction

The process mechanism allows the definition of a set of sequential processes that will proceed in paral-
lel and unknown relative speeds. Demand processes are activated when specific events occur. Periodic
processes may be turned on or off, but are re-started at regular intervals when turned on.

1.2. Interface overview

1.2.1. Access program table

hhProgram Parameters Description Undesired events

++D_PROCESS++ p1: timeint; I !!deadline!!
p2: program; I process body

%inconsistent time parms%
%missed deadline%
%%sysgen process body%%

++P_PROCESS++ p1: timeint; I !!deadline!!
p2: timeint; I !!period!!
p3: semaphore; I !!starting event!!
p4: program; I process body
p5: boolean; I !!on/off!!

As above, plus:
%%illegal synch%%
%process completed%

+TEST_INTERRUPTS+ p1: boolean; O !+interrupt test result+!
None

-- Parameters --
++D_PROCESS++
++P_PROCESS++ The program given as the body must be that of a run-time program.

-- Effects --
++D_PROCESS++ establishes a demand process that becomes active after @T(!+power up+!).

The body of the process is the run-time program named by p2. The process
remains active until it is suspended as a result of a synchronization opera-
tion (see EC.PAR.2) or executes the last statement in its body. During the
interval when it is active, it will execute before p1 real time has elapsed. A
process that is suspended as a result of a synchronization operation may
start again. A process that executes its last statement (i.e., exits from the
program invoked as its body) will start again only after a system generation.

++P_PROCESS++ establishes a periodic process that becomes active when the semaphore
named by !!starting event!! becomes nonnegative. The body of the process
is the run-time program named by p4. While the boolean named by p5 is

EC.PAR.1 Process mechanisms

EC.PAR.1 Process mechanisms

true, a built in semaphore, NEXT_PERIOD, will be incremented at the start
of each !!period!! amount of real time. After the start of a !!period!!, the
process will complete execution before p1 real time has elapsed. The pro-
cess must perform [+DOWN+ NEXT_PERIOD] [+PASS+
NEXT_PERIOD].

If p5 is given as a variable, and that variable becomes false while the
!!state!! of the process is active, the process will stop when it waits for the
start of its next !!period!! (by invoking [+PASS+ NEXT_PERIOD]).

If p2 is given as a variable, and that variable changes value while the
!!state!! of the process is active, the process will change its !!period!! within
an amount of time equal to the previous value of p2.

Both If p1 is given as a variable and that variable changes value while the
!!state!! of the process is active, the process will change its !!deadline!!
within an amount of time equal to its !!period!! (for periodic processes) or
by the time the process next resumes execution after suspension due to a
synchronization operation (for demand processes).

If two (or more) processes simultaneously execute sequences of statements
that read and/or alter the value of some data, the results are unpredictable
because the executions may overlap in time. However, EC access programs
are considered indivisible. If two EC access programs are executed simul-
taneously by two processes, the effect will be as if one of the processes exe-
cuted its access program before the other; the order is not specified. Note
that the !!invocation!! of a user-supplied routine is the execution of a single
EC access program, but the execution of the body of that routine is a
sequence of EC statements.

+TEST_INTERRUPTS+ Reports the results of the interrupt hardware checks. If the test is performed
periodically or independent of user request, the result given will be that of
the most recent test. If the test is performed on request, the command will
initiate the test and report the result when the test is complete. It may inter-
fere with normal operation of timers and input/output commands in
unpredictable ways.

1.2.2. Built-in objects

NEXT_PERIOD a semaphore variable, private to each periodic process, that will be incre-
mented by the EC at the start of each period. Each periodic process only has
access to its own NEXT_PERIOD. Semaphores are described in
EC.SMPH.

1.3. Local type definitions None.

1.4. Dictionary

!!deadline!! The maximum amount of real-time that can be allowed to elapse between the
time that a process can proceed and the time that it reaches the next point of
suspension.

!+interrupt test result+! True iff the interrupt hardware passes built-in test.

3-29

EC.PAR.1 Process mechanisms

!!on/off!! The boolean whose value will be used to start/stop the periodic process in
whose definition it appears. Its value must be $true$ whenever the periodic
process is supposed to proceed. If it is $false$ when the process next reaches
its starting point, the process will be suspended until it becomes $true$ again.
Of course, the value may only be changed if the boolean was given as a vari-
able.

!!period!! The timeint whose value will be interpreted as the amount of real-time that
should elapse between the beginning of one execution of a periodic process
and the beginning of the next execution. If !!period!! is given as a variable,
changing its value has the result of changing the period of any process for
which it was used as the !!period!!.

!!starting event!! The name of a semaphore that, when becoming nonnegative, will cause the
periodic process in which it is named to become active.

1.5. Undesired event dictionary

%%illegal synch%% The body of a periodic process either (a) does not contain the statement
sequence [+DOWN+ NEXT_PERIOD] [+PASS+ NEXT_PERIOD]; or (b)
contains a +PASS+ operation on some semaphore other than NEXT_PERIOD.

%inconsistent time parms% The timing parameters are contradictory; i.e. !!deadline!! exceeds the current
value of !!period!!.

%missed deadline% A periodic process has missed its !!deadline!! because too many demand
processes have occurred; or a demand or periodic process has missed its
!!deadline!! because its !!deadline!! was less than the CPU time required for it
to execute.

%process completed% A periodic process has completed execution by taking an exit from the pro-
gram that is its body.

%%sysgen process body%% The program given as the body of a process is a sysgen-time program.

1.6. System generation parameters None

3-30

CHAPTER 5

EC.PAR.2: Exclusion Regions

2.1. Introduction

This module allows constraints to be placed on the potential concurrency of processes executing
regions of code by defining an exclusion relation among them. Region 1 excludes region 2 if starting to exe-
cute region 2 is forbidden while region 1 is being executed. Mutual exclusion is a special case of this exclu-
sion relation, which is based on [BELP73].

2.2. Interface overview

2.2.1. Access program table

hhProgram Parameters Description Undesired events

++REGION++ p1: name; I region name
%%name in use%%

++END_REGION++ p1: region; I region name
%%region across pgms%%

++EXCLUSION++ p1: exclusion-relation; I

%%illegal exclusion%%

-- Effects --

++EXCLUSION++ If the exclusion relation includes (A B) then no process will begin to execute any
statement in region B in the time interval that starts when a process begins execu-
tion of any statement in region A and ends before that process begins execution of
any statement not in region A. The exclusion relation for all regions is composed
of the exclusion relation given in each !!invocation!! of this program. User-defined
regions may not exclude EC built-in regions.

++REGION++
++END_REGION++ p1 may be used to stand for the section of code that is enclosed between these two

statements; p1 may now be used in an ++EXCLUSION++ statement.

If the last action before the region causes a process to wait, then the process is con-
sidered to be inside the region when it is allowed to proceed. If the last statement
to be executed in the region is a wait operation, then the process is considered to
have left the region when it begins to wait. Including regions in a process will
prevent the process from waking up, if doing so would result in a violation of an
exclusion region.

If an invocation of a user-defined program is in a region, a process executing the
invocation does not leave the region during the execution of the program. If the
invoked program contains a region, then the process containing the invocation
enters the region when the code contained in the region is executed.

EC.PAR.2 Exclusion regions

EC.PAR.2 Exclusion regions

2.3. Local type definitions

exclusion-relation A !!relation!! on regions.

region A name (defined in EC.DATA.3) of an exclusion region that previously appeared in a
call to ++REGION++, or the name of a built-in EC region that appears in
EC.INDEX.

2.4. Dictionary None.

2.5. Undesired event dictionary

%%illegal exclusion%%
The name of an EC built-in exclusion region appeared in the range of the exclusion
relation.

%%region across pgms%%
There is an !!invocation!! of ++REGION++ in the body of a program without an
!!invocation!! of the corresponding ++END_REGION++ in the body of the same pro-
gram.

2.6. System generation parameters None.

3-32

CHAPTER 6

EC.PGM.1: Program Construction

1.1. Introduction

Using the facilities of this module, a user can construct programs composed of !!invocation!!s of EC
built-in access programs and user-defined programs. This is done by naming the entrances and exits of these
programs and describing connections between them. Each exit is connected to one !!invocation!!. The
resulting structure is called a !!constructed program!!. On completion of its execution, a program selects an
exit; the next program executed will be the one connected to that exit.

All EC access programs have one entrance. Many have one exit, but some (see EC.PGM.1.2.1) have
as many exits as there are values in the range of the output parameter. When such a program is executed, it
chooses the exit that corresponds to the value it has computed.

A !!constructed program!! is a literal of the typeclass PGM. In EC.PGM.2 we describe the declaration
and use of entities of that typeclass. In EC.PGM.3 we describe facilities for invoking programs as closed
subroutines.

1.2. Interface overview

1.2.1. Entrances and exits of EC access programs

Every EC access program has exactly one entrance.

Every EC access program that has a single output parameter has n exits, where n is the number of
values that can be computed for the output parameter. Each exit is denoted by a literal or ascon of the
desired value. The exit taken by the program is the one denoted by the literal or ascon that is equal to the
value computed by the program, where equality is defined as in EC.DATA.2.6.1 with threshold = 0.

For purposes of comparison, the spectype of the result of the operation is the same as the !!destina-
tion!! given with the operation, or (if more than one !!destination!! is given) the last member of the desti-
nation !!list!!.

All other EC access programs have exactly one exit.

1.2.2. Entrances and exits of !!constructed programs!!

The entrances and exits of a !!constructed program!! are determined by its specific type. See
EC.PGM.2.

1.2.3. Connecting !!command!!s within a !!constructed program!!

1.2.3.1. !!Name tag!!s

All !!invocation!!s of run-time programs are preceded by a !!name tag!!; a !!name tag!! is either
the empty string, or a !!list!! of names followed by a colon. Each name may be an entrance included in
the attributes of the program spectype of the !!constructed program!! in which the !!invocation!!
appears; otherwise it is considered to be a label.

These UEs apply to !!name tag!!s:

EC.PGM.1 Program construction

EC.PGM.1 Program construction

%%label name in use%%
%%sysgen name tag%%

1.2.3.2. !!Exit connectors!!

All !!invocation!!s of run-time programs are followed by an !!exit connector!!, in one of the fol-
lowing forms.

!!exit connector!! ::= : connection-list |
The second (null) form pairs all exits of the invoked program to the textually next !!command!!.

connection-list ::= a !!list!! whose elements are connections

connection ::= (exit-list port) | port

The first form pairs all exits in the exit-list with the corresponding port. (The exits must be exits
of the program whose invocation this !!exit connector!! follows.)

The second form pairs all otherwise unconnected exits with the port. The second form may
appear at most once in a connection-list.

exit-list ::= exit | !!list!! of exits and/or !!interval!!s

An !!interval!! specifies a range of values and thus denotes a set of exits; this form is only legal
for EC builtin programs that compute a single output numeric that is numeric.

exit ::= name | value

The second form applies only to EC builtin programs that compute a single output parameter.
The value may be given by an ascon or literal, and must evaluate at system generation time to a
value that the program can return. The first form applies to all other programs, including user-
defined programs.

port ::= label | exit

If a label, the label must be that of a label in the !!name tag!! of any !!command!! in the !!con-
structed program!! in which this !!command!! appears. If an exit, the exit must be an exit in the
attributes of the program spectype of the !!constructed program!! in which this !!command!!
appears.

After a !!command!! is executed, the next !!command!! to be executed is determined by the port
paired with the exit that the !!command!! selected. If the selected exit is paired with a label, the next
!!command!! to be executed will be the one in the same !!constructed program!! whose !!name tag!!
contains that label. If the selected exit is paired with an exit to the !!constructed program!! itself, then
the execution of the !!constructed program!! is complete. These UEs apply to !!exit connectors!!:

%%ambiguous exit connector%%
%%dest unknown%%

%nowhere to go%
%%not an exit%%

%%sysgen exit connector%%

1.2.4. Order-independent operations -- !!par program!!s

The EC provides a way for the user to specify a set of operations for which the order of execution
doesn’t matter. Use of this construct may enhance the user program’s efficiency; see Appendix G. The
construct is another form of !!constructed program!! and is called a !!par program!!. Its syntax is given in
the definition of that term. The !!command!!s will be executed in an order determined by this module.
Each !!command!! in the !!par program!! must have a null !!exit connector!!, and a null !!name tag!!.
None may use the <NOSTORE ...> form of operand for any parameter.

%%inappropriate par list%% applies to !!par program!!s.

3-34

EC.PGM.1 Program construction

1.3. Local type definitions

invocation-list A !!list!! of !!invocation!!s.

1.4. Dictionary

!!command!! An !!invocation!! of a run-time program preceded by a !!name tag!! and suffixed by
an !!exit connector!!.

!!constructed program!!
A sequence of !!command!!s and/or !!invocation!!s of sysgen programs; equivalently,
a program literal. The syntax is

<PGM call-list> | <PAR call-list>

The second form is that of a !!par program!!;

call-list ::= call | call call-list

and

call ::= !!command!! | !!invocation!!

!!exit connector!! An association between the exits of an invoked program and labels in or exits to the
!!constructed program!! in which the !!invocation!! appears. The syntax and seman-
tics are defined in Section 1.2.3.2.

!!name tag!! Either the empty string, or a !!list!! of labels or entrances; precedes every !!invoca-
tion!! of a run-time program. See Section 1.2.3.1.

!!par program!! A !!constructed program!! that uses the PAR keyword, and whose !!command!!s
have null !!exit connectors!! and !!name tag!!s, and do not use the <NOSTORE ...>
form of operand specification. The EC will choose the order of execution of the
!!command!!s. A !!par program!! is a program literal whose specific type is E1.

1.5. Undesired event dictionary

%%ambiguous exit connector%%
An !!exit connector!! paired the same exit with two different ports.

%%dest unknown%%
Either (a) an !!exit connector!! named a port that was neither a label in any
!!command!!’s !!name tag!! in the !!constructed program!!, nor an exit of the !!con-
structed program!!; or (b) a null !!exit connector!! was given in the textually last
!!command!! in a !!constructed program!! that was not a !!par program!!.

%%inappropriate par list%%
The invocation-list contained an !!invocation!! preceded by a non-null !!name tag!!
or followed by a non-null !!exit connector!!, or contained a <NOSTORE ...> operand.

%%label name in use%%
A name that is not an entrance appears in a !!name tag!!, and that name is already in
use as one of the following:

- a built-in object or spectype;
- an EC access program;
- an EC UE;
- an EC reserved word;

3-35

EC.PGM.1 Program construction

- an EC system generation parameter;
- a user-defined spectype, entity, array, data_set, type_class, or region;
- an exit in a user-defined program;
- a label in the same !!constructed program!!; or
- an entrance of some other !!constructed program!!.

%%not an exit%% The !!exit connector!! following an !!invocation!! contained an exit that is not an exit
of the program being invoked.

%nowhere to go% A program took an exit that was left unconnected.

%%sysgen exit-connector%%
An !!invocation!! of a sysgen program was followed by an !!exit connector!!.

%%sysgen name tag%%
An !!invocation!! of a sysgen program was preceded by a non-null !!name tag!!.

1.6. System generation parameters None.

3-36

CHAPTER 7

EC.PGM.2: Program Entities

2.1. Introduction

This module provides mechanisms for declaring entities of type program and assigning a value to
them. The EC access programs are built-in program constants; see EC.PGM.2.2.3.2.

2.2. Interface overview

2.2.1. Declaring a program type

To declare specific program types, use the ++DCL_TYPE++ program specified in EC.DATA.2.1,
with:

p2 = PGM;
p3 a pgm-attribute, defined in section EC.PGM.2.3;
and the other parameters as described there.

2.2.2. Declaring a program entity

To create an entity of the program typeclass, use ++DCL_ENTITY++ (see Section EC.DATA.2.2.1)
with:

p2 = a spectype_list of program spectypes (builtin or user-declared);
p4 = a program literal, or a parameterless program constant whose spectype is named in p2,
or UNDEF;
and the other parameters as described there.

2.2.3. Declaring an array of programs

To create an array of program entities, use ++DCL_ARRAY++ (see Section EC.DATA.2.2.2) with:

p2 as described above; p4 = an array-init (defined in EC.DATA.2.3) of program literals or
parameterless program constants whose spectypes are named in p2, or UNDEF; and the other
parameters as described there.

2.2.4. Other operations on program entities

hhProgram Parameters Description Undesired events

+SET+
++SET++ p1: program; I !!source!!

p2: program; O !!destination!!
%%inconsistent pgms%%

-- Parameters --

+SET+
++SET++ p1 and p2 must be !!list!!s of program entities, with corresponding elements having the

same attributes. None may have parameters.

EC.PGM.2 Program entities

EC.PGM.2 Program entities

-- Effects --

+SET+
++SET++ As described in EC.DATA.2.5.

2.2.5. Built-in objects

2.2.5.1. Undesired event programs

Every run-time UE specified in this document is a built-in uninitialized pointer variable with attri-
bute (E1 SCALAR). The program referred to by the pointer will be invoked when the error condition
corresponding to the UE definition is detected by the EC program(s) to which the UE applies. It is up to
the user to assign a value to each of these pointer variables; %uninitialized entity% applies. Exception:
%uninitialized entity% is itself initialized to <REF +S_FAIL_STATE+>.

2.2.5.2. EC Built-in access programs

Each EC access program is a built-in constant of the program typeclass. For most programs, the
spectype of the program is not named. If the access program has no parameters, its spectype is E1.

2.2.6. Undesired event detection

UE detection may be turned on and off by the following program.

hhProgram Parameters Description Undesired events

++CHECK++ p1: name; I run-time UE
p2: boolean; I check for p1?

%%not runtime UE%%

-- Parameters --

p1 must be a !!list!! of run-time undesired event names. p2 must be given by an ascon or a literal.

-- Effects --

For each UE named in p1: If p2 = $true$ ($false$) then the UE will be detected (will not be
detected) in code subsequent to this !!invocation!! but prior to the textually next !!invocation!! of
++CHECK++ that contains the UE in p1. Initially, the EC will detect no run-time UEs.

2.3. Local type definitions

E1 A built-in specific type of the program typeclass. It is characterized by a single entrance
named ENTRANCE1 and a single exit named EXIT1.

pgm-attribute An ordered pair (!!list!! !!list!!). The first !!list!! names the entrance(s) to programs of the
type; the second !!list!! names the exit(s) of programs of the type. See EC.PGM.3.3 for a
definition of "entrance". %%name in use%% applies to the entrances and exits.

program An entity of the program typeclass previously declared via ++DCL_ENTITY++, or a
member of a program array previously declared via ++DCL_ARRAY++, or a built-in EC
access program, or a program literal. A program literal is a !!constructed program!! as
defined in section EC.PGM.1.

3-38

EC.PGM.2 Program entities

2.4. Dictionary None.

2.5. Undesired event dictionary

%%inconsistent pgms%%
An assignment was attempted between entities of different attributes; or, one of the entities
is not a parameterless program.

%%not runtime UE%%
A name was given that is not the name of a run-time undesired event in the EC.

2.6. System generation parameters None.

3-39

CHAPTER 8

EC.PGM.3: Program Invocation

3.1. Introduction

This module provides mechanisms for invoking programs (either built-in or user-defined) and, in the
former case, passing parameters to those programs.

3.2. Interface overview

The syntax for invoking a program is as follows:
!!invocation!! ::= [pgm parm-list]

For programs with no parameters, the parm-list is empty.

-- Effects --

If an EC run-time access program is named, the effect is that which is specified for that program.

If an EC system-generation-time access program is named, there is no run-time effect; system genera-
tion programs are executed before run-time in the order of their occurrence in the source code and before any
code is compiled. The values used in compiling the code are the last values computed by this pre-run-time
execution.

If a user-defined program is named, the effect is that of executing the !!command!!s in the !!con-
structed program!! that has been assigned to the program (either as the initial value as described in
EC.PGM.2.2.1, or subsequently as described in EC.PGM.2.2.3) beginning at the entrance named.

The following undesired events apply to program !!invocation!!:
%constant destination%

%%constant destination%%
%%entrance incorrectly omitted%%

%%not an entrance%%
%recursive call%

%%undefined name%%
%%wrong num parms%%

%%wrong type%%
%wrong type%

3.3. Local type definitions

entrance The name of an entrance to the program that is the value of the invoked entity, previously
specified by ++ENTRANCE++ for that program.

parm-list

::=
| parm parm-list

parm An !!actual parameter!! to the program.

EC.PGM.3 Program invocation

EC.PGM.3 Program invocation

pgm

::= program | (program entrance)

The first form may be used when the program only has one entrance.

3.4. Dictionary

!!actual parameter!!
An entity that appears in the parameter list of a program !!invocation!!. The forms that this
may take are specified in EC.DATA.2.4.

!!invocation!! A program call; the syntax is defined in Section 3.2 of this chapter.

3.5. Undesired event dictionary

%constant destination%
%%constant destination%%

The user has supplied a constant or a literal as a !!destination!!.

%%entrance incorrectly omitted%%
The user has failed to specify an entrance in an !!invocation!! of a program that has more
than one entrance.

%%not an entrance%%
The entrance named in the !!invocation!! is not an entrance to the program being invoked.

%recursive call%
A program has invoked itself, either directly, or indirectly. More formally, for the purposes
of this definiition let I be a relation called invokes whose domain and range are the set of
user-defined EC programs. The ordered pair (a,b) is in the relation if a invokes b. The rela-
tion is transitive. Then this UE is raised if there exists some program x such that (x,x) is in I.

%%wrong num parms%%
The programmer supplied a different number of !!actual parameters!! than the number
called for by the program’s specification.

%%wrong type%%
The type of an !!actual parameter!! is not of the type called for in the specification of the
program, as indicated in the "Parameters" column of the access program table.

%wrong type%
The !!actual parameter!! failed to meet the type or other constraint specified in the "Parame-
ters" section immediately following the access program table; or, the !!actual parameter!!
was given using the <DEREF ptr> form of operand description and the pointer was pointing
to an entity not of the type called for in the "Parameters" column of the access program
table.

3.6. System generation parameters None.

3-41

CHAPTER 9

EC.SMPH: Synchronization Variables and Operations

1. Introduction

This module provides a run-time synchronization mechanism, semaphores, with associated operations.
They can be used where exclusion regions cannot express the constraints. This mechanism is based on
[BELP73]; the semaphore operations are a more primitive version of Dijkstra’s P and V [DIJK68].

Semaphores can also be affected by timers; see EC.TIMER.

2. Interface overview

2.1. Declaring semaphore types

To create specific semaphore types, use the ++DCL_TYPE++ program specified in EC.DATA.2, with:

p2 = SEMAPHORE;
p3 a semaphore-attribute, defined in EC.SMPH.3;
and the other parameters as described there.

2.2. Declaring semaphore entities

Semaphore entities must be declared before they can be used. Use the ++DCL_ENTITY++ program
of Section EC.DATA.2.2, with:

p4 (the initial value) given as an integer literal, or UNDEF;
and the other parameters as described there.

2.3. Declaring semaphore arrays

To create an array of semaphores, use the ++DCL_ARRAY++ program of EC.DATA.2.2.2, with:

p4 as described there, with initial values given as integer literals, or UNDEF;
and the other parameters as described there.

2.4. Access programs

hhProgram Parameters Description Undesired events

%range exceeded%
%%illegal up/down%%

+DOWN+
+UP+ p1: semaphore; IO

+SET+ p1: semaphore; I
p2: semaphore; O

hh

+PASS+ p1: semaphore; I
None.

EC.SMPH Semaphores

EC.SMPH Semaphores

-- Effects --

In this section, we characterize informally the effects of the synchronization operations. For a more
precise description, see the formal specifications in [TRACE].

ii
EFFECT ONOPERATION NAMED SEMAPHORE EFFECT ON PROCESS STATE(S)

ii
if semaphore ≥ 0 then

+UP+ incremented by 1
!!state(waiters)!! := activeii
if the semaphore < 0 then

+PASS+ none
!!state(self)!! := waitingii

+DOWN+ decremented by 1 noneii
same as if the value of p2 were arrived at
by the smallest possible number of consecutive+SET+ p2 set to value of p1
operations of +UP+ and +DOWN+.iic

c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c

3. Local type definitions

semaphore A run-time synchronization object created previously by a user program by calling
++DCL_ENTITY++; or one of the EC’s built-in semaphores listed in EC.INDEX.

semaphore-attribute
An ordered pair of integers specifying the lower bound and upper bound of the type.

4. Dictionary

!!state!! Either active or suspended; an active process is eligible to proceed; a suspended one is not.

!!state(self)!! the !!state!! of the process executing the synchronization operation

!!state(waiters)!! the !!state!! of all processes in the middle of a +PASS+ operation for a particular sema-
phore

5. Undesired event dictionary
%%illegal up-down%%

A user has attempted an +UP+ or +DOWN+ operation on an EC built-in semaphore, or
attempted to assign a value to one.

6. System generation parameters

#max semaphore ascon#
Type: semaphore. Maximum allowable magnitude for a semaphore ascon or literal.

#max semaphore loadcon#
Type: semaphore. Maximum allowable magnitude for a semaphore loadcon. The value is
greater than or equal to that of #max semaphore ascon#.

#max semaphore range#
Type: semaphore. Maximum allowable value for absv(upper bound - lower bound) for a

3-43

EC.SMPH Semaphores

semaphore type.

3-44

CHAPTER 10

EC.STATE: Extended Computer State

1. Introduction

This module controls and reports transitions between Extended Computer states.

2. Interface overview

2.1. Access programs

hhProgram Parameters Description Undesired events

+S_FAIL_STATE+
None

2.2. Events signalled by incrementing a semaphore

Event Semaphore Region
@T(!+power up+!) ECPOWUP ECPOWUP_reg
@T(!+failed state+!) ECFAILED ECFAILED_reg

-- Effects --
+S_FAIL_STATE+

!+failed state+! = $true$, ECFAILED is incremented, and an internal shutdown pro-
cedure is executed.

@T(!+failed state+!)
Programmers should assume that when #close down time# has elapsed after this event,
no more software actions can occur.

@T(!+power up+!)
The Extended Computer has entered the operating state and is functioning correctly. All
demand processes are started.

3. Local type definitions None.

4. Dictionary

!+power up+! computer is in the operating state and may be assumed to be functioning properly.

!+failed state+! no more software actions may occur more than #close down time# time after !+failed
state+! becomes true.

EC.STATE State module

EC.STATE State module

5. Undesired event dictionary None.

6. System generation parameters

#close down time#
Type: timeint. The minimum expected time interval between the moment that the Extended
Computer enters failed state and the moment when no more software actions may occur.

3-46

CHAPTER 11

EC.TIMER: Timer Facilities

1. Introduction

This module provides facilities for measuring real time intervals via timers. A timer is just like a timeint
variable except that, when running, it will increment or decrement at a rate commensurate with real time.

A timer may be used anywhere a timeint variable may be used. In addition, there are two additional
operations, START_TIMER and HALT_TIMER, that may be used. START_TIMER increments or decrements
the timer until a limit is reached.

When a timer is declared, the user may choose between timers that increment and timers that decrement,
as well as between timers that halt when they reach their limit and timers that "wrap around". The user may
also specify a semaphore that will be incremented when the timer reaches its limit.

2. Interface overview

2.1. Declaring timer types

Timers are a numeric type class, as described in EC.DATA.1. To declare specific timer types, use the
++DCL_TYPE++ program specified in EC.DATA.2.1, with:

p2 = TIMER;
p3 a timer-attribute, defined in section EC.TIMER.3;
and the other parameters as described there.

2.2. Declaring timer entities

Timer entities must be declared before they can be used. Use the ++DCL_ENTITY++ program of
Section EC.DATA.2.2.1, with:

p3 = VAR;
p4 the initial value given as a timeint literal, or UNDEF;
and the other parameters as described there.

2.3. Declaring timer arrays

To declare an array of timers, use the ++DCL_ARRAY++ program of EC.DATA.2.2.2, with:

p3 = VAR;
p4 as described there, using timeint literals or UNDEF as initial values;
and the other parameters as described there.

2.4. Access programs

hhProgram Parameters Description Undesired events

++TIMER_EVENTS++ p1: timer; I timer name
p2: semaphore; I limit-value event

None

+START_TIMER+
+HALT_TIMER+ p1: timer; I timer name

EC.TIMER Timer facilities

EC.TIMER Timer facilities

2.5. Timer tests

hhProgram Parameters Description Undesired events

+TEST_TIMER+ p1: boolean; O !+timer test result+!
None

-- Effects --
+HALT_TIMER+ Causes running timer p1 to halt. Halting a non-running timer has no effect.

+START_TIMER+ Causes the value of p1 to be changed in value in real time. The value will be
increased or decreased according to the declaration of the specific type to which p1
belongs. According to the declaration of the specific timer type to which p1
belongs, the timer will either stop when it reaches its minimum (maximum) value,
or "wraparound"; i.e., continue from its maximum (minimum) value. Starting a
running timer has no effect.

++TIMER_EVENTS++ Causes an event to be signalled (by incrementing p2) every time p1 reaches its
minimum range value (if p1 is a decrementing timer) or its maximum range value
(if p1 is an incrementing timer). The semaphore will be decremented after it is
incremented, and both operations will occur inside a region called p1_reg where p1
is replaced by the name of the timer.

+TEST_TIMER+ Reports the results of the timer hardware tests. If the test is performed periodically
or independent of user request, the result given will be that of the most recent test.
If the test is performed on request, the command will initiate the test and report the
result when the test is complete. It may interfere with normal operation of timers
and input/output commands in unpredictable ways.

3. Local type definitions

timer The name of a time-keeping mechanism declared previously by a user program.

timer-attribute An ordered 5-tuple of the form

(timeint timeint timeint HALT/WRAP UP/DOWN)

The first three elements specify the lower bound, upper bound, and minimum !!reso-
lution!!, respectively, of entities of the type. The fourth element is either "HALT"
(meaning that the timer should stop when it reaches a limit) or "WRAP" (meaning
that the timer should wrap around when it reaches a limit). The fifth element is either
"UP" (meaning that the timer increments when started) or "DOWN" (meaning that
the timer decrements when started).

4. Dictionary

!+timer test result+! true iff the timer hardware passes built-in test.

5. Undesired event dictionary None.

6. System generation parameters

#max static timer error# Type: timeint. Maximum error associated with reading a timer, independent of the
time interval measured; positive.

3-48

EC.TIMER Timer facilities

#max timer error rate# Type: real. Maximum time-dependent error rate of all timers, given as a fraction of
the time interval measured.

#max timer range# Type: timeint. Maximum allowable value of absv(upper bound - lower bound) for a
timer type.

#max C1 characteristic# Type: real. For timers of version C1, the maximum allowable !!version 1 characteris-
tic!!.

#min timer resolution# Type: timeint. For all timers, the minimum resolution.

3-49

APPENDIX A

Design Issues

0. GENERAL

(1) It is arguable whether the Efficiency Guide should be included in this document. One author (Parnas)
felt that it confused machine-dependent assumptions with a machine-independent (abstract) interface.
However, others felt that making this distinction was not worth the overhead of maintaining a separate
document. We have tried to make it very clear that should the implementation change, the Efficiency
Guide would change although user programs would continue to be correct.

1. EC.DATA

(1) We decided to give the programmer some control over the register, so that he could take care of reducing
register loads and stores by being careful with the order of operations. The alternatives we considered
were notations much closer to high-level programming languages. These notations make complex
expressions easier to read, but require a more sophisticated translator if we are to make efficient use of
registers.

(2) There is a danger with fixed point division that the results will be meaningless; this problem occurs when
the numerator has more significance than the denominator. An assembly language programmer has some
information that he uses to avoid this danger. The only way we can get this information is to ask the pro-
grammer to provide it, since it is dependent on the context and meaning of the division.

(3) Two ways were proposed for user programs to indicate the radix of the number for a bitstring-real
conversion:

a. by giving an integer literal i such that the rightmost bit of the bitstring represents 2 raised to the i-th
power;

b. by giving an integer literal i such that i is the number of the bit immediately to the right of the radix pt.

Alternative b most closely resembles the scaling notation used in the current program, but we chose alter-
native a because most designers felt that it was easier for newcomers to understand and remember.

(4) There are two main reasons for including variables whose attributes may vary: (a) they can be reused at
different points in a computation, thereby reducing the amount of space that must be reserved; and (b)
they allow the same code to be used to manipulate values in widely differing ranges.

(5) We require the programmer to specify a type for results stored into and retrieved from variables whose
attributes can vary. We considered permitting, but not requiring, specification of the type of intermediate
results and letting the Extended Computer determine the specific type when the programmer omitted the
specification. We ruled out this alternative because it requires a run-time support package to keep track
of the specific types of varying-type variables.

(6) We considered several alternatives for providing registers:

a. Having a common register for all type classes. This register can be very simply mapped to the accu-
mulator.

b. Having a separate register for each type class, implementing them with the single accumulator, and
leaving the problem of interference between them up to the programmer. This was originally accepted
because it is the simplest alternative that provides type checking for results in the register. However it
gives away the underlying limitation, and imposes restrictions on the programmer that would not be
needed if the underlying hardware had more registers or if there was multi-processor hardware.

Design issues

Design issues

c. Having a separate register for each type class, implementing them with the single accumulator, and
completely automating the problem of interference between the registers, freeing the programmer from
any concern about it. This could be done by saving and restoring the accumulator contents whenever a
different register is used. While it would be the most convenient alternative, the overhead would be
prohibitive.

d. Having a separate register for each type class, implementing them with the single accumulator, and
partially automating the problem of interference between the registers. The programmer would have to
indicate when he wants to reuse results in a particular register and when he does not care.

We chose alternative (a) because it is the simplest and treats a register as a variable with varying attri-
butes.

(7) We felt it important that the EC implementation avoid saving contents of a register if they would never
be needed and therefore put that burden on the programmer rather than try to do register usage analysis.
We considered several ways to allow the programmer to specify whether or not the value in the register
would be needed again. Among them:

a. Associate the information with the name of the register.

b. Associate the information with the name of the operation.

We chose (b) because we did not want to have two names for the same object. Further, it allows us to
localize the information in a place related to the operations (of which it is a property) rather than the
registers.

(8) An earlier version of this interface included operations such as squareroot, exponentiation, log, and root-
sum-squared. We decided to move these operations to another module because they can be implemented
in a machine-independent fashion. These concerns do not belong in the Extended Computer.

(9) An earlier version of this module had two bitstring sizes, corresponding to halfwords and fullwords on
the target computer. We then decided to have only one size because it results in a simpler data type. We
finally decided to have bitstrings of any size because we noted that insisting on a fixed but unknown size
made it difficult to write efficient but machine independent code. The present choice makes the interface
unbiased with respect to word length and puts the burden for effective use of the actual hardware on the
implementor of the EC.

(10) We considered specifying bitstring sub-ranges in terms of (startingoint,
length) instead of (starting point, ending point). One parameter fewer would be needed on bitstring com-
pares and transfers, and we could avoid the unmatching lengths undesired event. However, we found that
people working with bitstrings find it easier to work by identifying the boundary bits.

(11) We considered having the EC monitor arithmetic operations for excessive loss of significance but
decided that this was a programmer responsibility and could be done in a machine independent way.
This eliminated the undesired event %too much lost significance%.

(12) We considered relegating time to the application data type module and implementing it in terms of reals.
We chose to include it in the EC because the concept of time is basic to the specification and implemen-
tation of real-time processes in the EC and because the representation should be that used in the hardware
timers.

(13) We considered allowing array declarations to be shared by several variables. We found this not particu-
larly useful unless one has operations that take whole arrays as operands.

(14) We decided not to allow array elements to be structures. We lose the ability to have arrays of arrays, but
if this were necessary, it could be implemented in a machine independent way and could be provided by
some other module.

(15) We considered allowing index sets to be more general, but this seemed unnecessary even for future
extensions. Such extensions could be done using the present arrays and the extension would be machine
independent. We also considered restricting the lower array bound to be either 0 or 1. This seemed
unnecessarily restrictive, especially as it may be desirable to select array indices at sysgen time.

(16) We considered fixing the value of the array index set at declaration time, system generation time, or run
time. Declaration time is too restrictive; it is sometimes useful for the array index set to be a system gen-
eration parameter. Run time fixing requires dynamic storage allocation, which is not needed or practical

3-51

Design issues

for avionics applications.

(17) We rejected the option of operations that apply to arrays as units, e.g. multiplying arrays by scalars or
arrays by arrays. Such operations depend on mathematical algorithms, rather than on characteristics of
the computer and can be implemented in a machine-independent way. The present design is the simplest
way to hide the hardware addressing mechanism. Extentions can be provided by user programs.

(18) We considered not allowing arrays of variables whose attributes vary at run-time as it might simplify the
implementation if all elements had the same attributes at all times. Although the implementation of
arrays with varying attributes will probably be less efficient than arrays of fixed attribute elements, this
feature is occasionally needed.

(19) More than one reviewer asked if the Extended Computer shouldn’t provide stacks as a builtin data struc-
ture. If we need stacks, they can be provided using the current EC facilities. The interface to those facil-
ities (probably in the Application Data Types module) would be carefully modelled after the EC. Should
we transfer to stack machine, we could move the interface into the EC, and user programs would not
have to change. This rationale also applies to floating point arithmetic, multi-dimensional arrays, array
operators, etc.

(20) Entity names are global in the EC. This is because that is what avionics computers provide; one can limit
the scope of a name (if desired) in a machine-independent way (e.g., using naming conventions, or a
pre-processor).

(21) We recognize the need to represent data most efficiently for the operations in which it will be used.
Since only users can determine how a datum will be used, the best the EC can do is provide a menu of
representations and tell the users what each one is best and worst at doing. Hence, the "version" attribute
in specific types.

(22) We considered allowing non-homogenous arrays; that is, arrays with different specific types. However,
that would mean that if an operand was a member of such an array, we couldn’t discover its type until
run-time. Because of this great run-time penalty, we deleted the capability for arrays whose attributes
can vary; however, we retain the capability of having arrays whose element attributes can vary.

(23) The +SHIFT+ program used to take a list of bitstrings as its input parameter; it shifted the concatenation
of the list. The idea was to allow the same kind of shifting that occurs in the TC-2 between adjacent
registers. However, it became clear that the implementation of such a feature would simply +CAT+ the
strings together first anyway, and shifting the result, and we would gain no efficiency. So for con-
sistency, +SHIFT+ now takes a single source parameter.

(24) We have made the decision to design the EC to be implemented on a machine that supports fixed-point
arithmetic and not floating-point arithmetic. The resolution required in a numeric variable is expressed in
our machine as a constant, independent of the magnitude of the value of the variable. In fixed-point
represenatations, there is a uniform distance between values that can be represented exactly. In floating-
point, the distance is small for small values, large for large values.

Were we to go to a floating-point machine, we would need to enhance the interface, because fixed-
distance representations on a floating- point machine would be very inefficient. We would let the user
specify a worst-case distance between representatives as a fraction of the value of the variable. The
implementation would choose a representation so that the mantissa of the number had a resolution (in the
current sense) less than the fraction.

The present interface may be considered a subset of a more complete interface in which we let the user
specify resolution either in absolute form (in which case a fixed-point representation would probably be
chosen) or in relative form (in which case we would represent the number using the floating-point
hardware, or by simulating floating-point). The present interface reflects our decision to make EC apply
to typical avionics machines, which are fixed-point.

(25) The pointer typeclass is a recent addition, included when we realized that we had denied users the capa-
bility found in all von Neumann machines of indirect referencing, or postponing operand specification
until run-time. Since the goal of EC was to abstract from the idiosyncrasies of particular avionics com-
puters, yet provide the capabilities that they provide, this was clearly an appropriate addition to the EC
architecture.

3-52

Design issues

(26) When declaring a specific type, it used to be an error to specify a version that did not exist for that partic-
ular type. We now say merely that the EC will pick one of its own choosing in that case. That is so that
should an Application Data Types (ADT) type ever migrate into the EC because of a change that
enhances the type repertoire of the hardware, we would like for user programs to remain correct. How-
ever, the versions that we would provide in the EC for that type might be entirely different than what
were provided for it in the ADT. The ADT types are documented in [ADT].

(27) The EC has variables whose attributes can vary at run-time, but for a long time we restricted the variation
to within a single typeclass; a bitstring variable could only take on bitstring attributes, etc. However, we
realized that this restriction prevented programmers from re-using storage in some cases, and in fact was
a restriction not present on the actual machine. It turned out to be easy to relax, and so we have done so.

(28) We specify that the maximum value of a loadcon must be at least as big as that of an ascon, because
sometimes an ascon must be stored at run-time (e.g., when it is pointed to). This essentially converts it
into a loadcon, unbeknownst to the user. We must assure that no ascon is too be to be so stored.

(29) (Obviated by later design) We provide -SAVE operations because on some machines it is possible to do
memory-to-memory operations without the use of an accumulator. On others, one must load the accumu-
lator and then store into the destination. We want to hide this difference. If we do it by pretending that
we can always do a move without using REG, the implementation will always save and restore REG to
simulate that. This may not be needed if the user has no more need for the value in REG. On the other,
if we hide it by saying that REG is undefined, the user will write programs that store things unnecessarily
when the value is not disturbed. The solution to this dilemna is to allow the user to tell us whether he
needs the value in REG again. If so, he asks for a save. If not, the implementation is free to destroy it.
In this way, on machines where we need the register, we will not save and restore unnecessarily. Further,
the user will never have to save and restore himself, so he will not do it.

(30) We formerly did not allow the EC user to use the <ATTR spectype variable> operand form when the
variable only belonged to a single spectype. However, we removed this restriction because (a) doing so
hurts nothing; and (b) it facilitates certain possible changes to the code: if the user re-declares his vari-
able so that it can change type, he need not change all the places where it was used previously.

(31) Similarly, we made it legal to use the <ATTR spectype entity> form for constants. It hurts nothing (as
long as the spectype matches the single declared spectype of the constant), and would allow the declara-
tion of a variable to be changed to a constant without having to change every place it was used as an
operand. This kind of change might be useful when developing subsets in which a particular variable
never happened to be used as a !!destination!!.

(32) We allow a <NOSTORE ...> operand in a destination list because (a) the user may want to store the
result of an operation into a variable yet still set up the accumulator as a !!source!! for the next operation
and this will prevent an unnecessary load-register instruction; (b) the user may want to use the
<NOSTORE ...> operand as the last element in his destination list, thus setting the spectype of the result
for branching comparisons. This may pay off in case the user has a set of exit literals/ascons of a particu-
lar spectype already declared; this prevents him from having to invent a new set just to match one of his
entity destinations.

(33) We used to have UEs %%literal or ascon too big%% and %%loadcon too big%%. We replaced those
two with %%literal too big%%, because (a) the only way you can exceed the max ascon size is with a
literal that’s too big; and (b) the maximum value of a loadcon is guaranteed to be greater than or equal to
that of an ascon/literal anyway. So just the one UE that applies to literals is needed.

(34) We allow a staggering variety of subrange assertions to be given by the user: unions of intersections of
intervals, intersections of unions of intervals, etc., with about a half dozen kinds of intervals available.
This might seem to run counter to our philosophy of minimizing the facilities that we provide; however,
this generalization costs nothing because we are free to ignore the assertions. Further, we cannot be sure
what kind of subranges we might find useful on other target machines. In fact, our implementation will
only make use of a small subset of the possible kinds of assertions.

(35) It is an unimplemented feature to declare EXACT_REP time intervals whose resolution is not an exact
power of two milliseconds. This was controversial, because the decision is actually a result of how we
chose to implement time intervals. We could have chosen differently. Thus, we have the situation where
an implementation decision led to change to the interface. The alternative would be to represent all

3-53

Design issues

EXACT_REP time intervals -- but to represent the others inefficiently. If we had done that, our
efficiency guide would have stated this fact. We believed that such a statement would have led users to
eschew the others, and so we would not have had to implement them anyway. We took a shortcut, and
simply chose a priori not to implement them. This remains a controversial decision, made in the most
part to save project time.

(36) We considered adding facilities for computing arithmetic values at system-generation time. This would
be useful when the value of certain entities needs to be a function of the value of previously-declared sys-
tem generation constants, and we need to be able to express that in declarations. Examples might include
the length of a bitstring used to represent the bit version of a real number, whose range and resolution are
given by sysgen parms. Another example is where we say that the range of a display is symmetric about
zero and we give the upper bound as a sysgen parm; the lower bound must be declared to be the negative
of the upper bound. Another example is the range of a spectype, which we might want to make 25%
bigger than some target value.

We could get around the need by defining enough new sysgen parms and mandating that their values be
functions of other sysgen parms. We feared, however, (a) a big proliferation of names; (b) possibly loops
and circular definitions, which we are ill-equipped to detect; and (c) a configuration control problem.

The easiest way to add this facility would be to make "++" versions of all the EC.DATA programs
(++ADD++, etc.) but unless we added sysgen-time control flow and variables that expired after sysgen-
time, this would be insufficient to solve the examples above. We really need a syntax for expressions
that can be used in-place in declarations; [APC] will most likely be the model.

We haven’t added the feature because the need for it isn’t as strong as we expected, and because it isn’t
at all clear that it belongs in this module.

(37) We used to call #max R1 characteristic# by the name of #max real ranres ratio#, and it purported to be
the single limiting value by which all declared reals would be compared for legality. We realized some-
what late that our definition of #max ranres ratio# was highly implementation-dependent. It gives away
the fact that we are using a binary machine with a specific type of arithmetic. In other words, it is
specific to the version of reals that we are implementing. Another version’s limits might be based on
other considerations entirely.

We realized that we needed a separate limiting parameter for each version that we provide, because each
version will produce its own limits, expressed in different ways. Should we acquire, say, a second real
version, then we will have to introduce a new sysgen parm for it. Thus, we changed the name of the sin-
gle sysgen parameter we have now (and the UE for exceeding it) to make it clearer that the limits depend
on the version, and that new versions will yield new sysgen parameters.

(38) The FLOOR operand form is a recent addition, added when we realized that TRUNC is prejudiced
towards a sign-magnitude representation (in which it can be implemented by simply shifing out low-order
bits). In a two’s-complement representation, the FLOOR form can be implemented in this way, but
TRUNC is more expensive. Further, both are useful operations, one which our users may well need, and
both appropriately implemented by this module.

We considered adding two more forms (CEILING, with the obvious semantics, and a form of truncation
that chooses the one of two closest representatives with the larger absolute value) but they do not appear
to be useful. We can add them later if necessary.

(39) We expect to implement EXACT_REP numbers by right-justifying them within TC-2 words. This
means that we always store numbers as exact integer multiples of their resolution; further, it means that
under some circumstances we must perform a ROUND operation on a result before storing it in order to
meet the EC specifications (because simple truncation would lose too much significance). Thus, under
some circumstances, using a simple form of operand is actually more expsensive than, say, doing a
FLOOR. Although this is somewhat conterintuitive, we don’t expect many such cases. If the user
doesn’t care about the exact representation of such numbers, he wouldn’t have asked for EXACT_REP
anyway. However, should this not be the case, we have an option of an alternate storage scheme: stor-
ing the numbers right-justified, but keeping one extra bit of significance. Then TRUNC and FLOOR are
somewhat more expensive, but no operation is very cheap. This would represent an additional version of
real numbers.

3-54

Design issues

(40) The Application Data Types module has programs that convert an angle to/from a
(degrees,minutes,seconds) triplet, in addition to programs that convert to/from degrees, to/from minutes,
and to/from seconds. For consistency, the EC should treat time intervals the same way. However,
because there is no demand for such programs, we have decided not to add them (we would make them
unimplemented anyway). Should we need them, they would be straightforward additions. Each pro-
gram would take four parameters: hours, minutes, seconds, milliseconds, and the corresponding timeint.

(41) We used to have a UE called %assertion violation% for giving a subrange assertion that turned out to be
false. However, the check for this was identical to that of %range exceeded%, and we would have had to
produce almost-identical machine code to perform it, so we deleted it.

(42) We added the BCD real/bitstring conversion programs because there are a couple of input data items that
BCD scheme to represent numbers. We thought about having the Device Interface Module do the neces-
sary conversions itself, but it turns out that BCD is a common representation scheme in machines that
perform decimal arithmetic, and we are explicitly hiding the numeric base of our target computer.

(43) We added the +MAX+ and +MIN+ programs after a discussion that led us to believe they should avail-
able in the ADT module. The reasons were that they seemed to be natural operations to perform on a
data type, and that they could be performed more efficiently knowing "inside" information about the enti-
ties, such as representation. One example is when +MIN+(x,y) always returns x because y’s spectype
contains no value less than any value in x’s spectype. We realized that the same reasoning applied to EC.

(44) We used to have a power-of-two notation for real literals: 2**n for some integer n. A negative number
was specified as -2**n. This worked well until we realized that our pseudo-code, which allows expres-
sions, evaluates -2**4 as +16, whereas in EC it is -16. Since the syntax one chooses for literals is not
particularly important from a machine abstraction point of view, we decided to take what for the project
was the easiest way out and change the EC syntax to eliminate that form altogether, combining it with the
exponential notation with which it is similar anyway.

(45) After writing a significant amount of code using the EC interface, we notice a great many specific type
declarations that exist merely to allow the declaration of a single entity. Were we designing EC over, we
might wish to provide a syntax to specify typeclass, attributes, and version in the entity declaration itself,
to avoid the somewhat cumbersome spectype declaration. We considered this early in the design phase,
but rejected it to encourage users to share spectype declarations among several entities. Sometimes that
has worked (so we should keep the spectype declaration statement to provide a shorthand name for a
<typeclass,attribute,version> triple) but often it has not.

2. EC.IO

(1) We considered five alternatives for handling retries of unsuccesful I/O operations:

(a) having two different commands for these two cases: one that retries, either once or until it succeeds,
and one that instead of retrying returns a failure indicator;

(b) having a parameter on the command specifying how often to retry, and having the command return a
failure indicator;

(c) having a failure indicator, and having the user program try again if it needs to retry transmission;

(d) having a special "retry" command, with a label operand, which the user can call to have the I/O com-
mand with the specified label retried.

(e) omitting the failure indicator for the data items where it is not currently used.

The first and fourth alternatives yield a more complicated interface than the third and provide no extra
capability. The second results in extra (non-machine-dependent) programs in the EC. The fifth alterna-
tive would build knowledge of the application into the EC. The third alternative relegates decisions
about retrying to the user programs, and we chose this one.

(2) We have considered four alternatives for handling the discrete inputs and outputs.

(a) Treating input and output differently, allowing user programs to use a READ command to read in
entire discrete input words, but providing a special WRITEBOOL command so that user programs could
write individual bits appearing in the discrete output words.

3-55

Design issues

(b) Adding a READBOOL command that would read in a discrete input word, pick out the bit for a par-
ticular discrete input data item, and return it as a boolean value. Alternative 2 was rejected because not
all the data items in discrete input words have boolean values. For example, /IMSMODE/ has five
values, one for each switch position.

(c) Provide the user programs with a way to specify a range of bits within both a discrete output word
that they want to write out and within an input word, so that they can request individual discrete inputs in
a symmetrical fashion. Alternative 3 leaves some of the responsibility for non-interference between
discrete outputs to the device interface modules, since they must specify the correct ranges.

Current: All of the above alternatives were based on the decision that the EC would sometimes identify
outputs and inputs by class name rather than the individual data item name. This was done both for
efficiency reasons and because it was believed that knowledge of the location of a data item within a
discrete input or output word was device dependent rather than computer dependent. A much more con-
sistent interface is achieved by always using the data item name. The EC implementer is now responsible
for knowing the identity of a TC-2 I/O item, but not responsible for knowing its meaning. The efficiency
problems are resolved by allowing a single command to take a list of parameters so that the EC imple-
mentation may perform operations to a single I/O word simultaneously rather than sequentially. This
also eliminates special treatment of double data items.

(3) We originally designed the reading of intermittent data with an access function that indicated whether or
not the data were available and an undesired event if a user program tried an intermittent read operation
when the data were not available. This seemed dangerous, since a slight timing difference could cause
an undesired event, and the user programs could not avoid the UE. Instead, we have chosen to allow the
read command at any time. If the data are not available, the success indicator returns false. This is con-
sistent with our general policy that it should be possible to avoid UEs by correct programming.

Because the intermittent data is read just like any other, we decided not to have a separate command
name for it.

(4) We considered having serial inputs identified by class names rather than by individual data item name.
Interpretation of the identification bits was considered the responsibility of the associated device interface
module. We decided that identification of the data item is an EC responsibility, but interpretation of the
item remains the responsibility of the DIM.

(5) Note that sometimes an output should go to more than one data item. We originally handled this by let-
ting users repeat sets of parameters to i/o commands. and saying that the order was unspecified. Since
we no longer have i/o commands per se, but rather use assignment (and other bitstring) operations, we
have expanded our general assignment statement so that many sources and many destinations can be
given at once; the assignment happens in an unspecified order.

(6) We promise that an output transmission will occur when an enabled output data item is used as a destina-
tion. We do not say when an input transmission will occur. This is because we can get away with it in
the latter case, but not in the former (because an output transmission has visible effects). We hide when
input takes place because someday there may be direct-memory-access input, and the computer really
won’t be able to control when an input item changes value.

(7) We did not include the names of the data items in the main document, because we wanted to emphasize
the fact that the architecture of the Extended Computer’s i/o operations doesn’t depend on those particu-
lar names. If the design of the Extended Computer were used with the TC-2 for some other application,
the names of the data items would not be part of the technology transferred.

(8) We chose special names for the data items’ bitstring spectypes because we felt that the representation for
each was likely to change in the event of a device replacement, and probably wouldn’t be the same as
that of a non-data-item bitstring anyway. For instance, we might choose to represent "normal" bitstrings
as contiguous and left-justified within a word, but we clearly don’t have this option with most of the data
items (see //FPANGL//, for instance).

(9) The signal converter is tested by sending particular values to it and then reading back the results of the
internal signal converter manipulation on the values. The proper relationship between the values sent out
and the value read in can be characterized by a set of equations. The design issue is how much of the
knowledge should be hidden within this module: both the equations and the choice of test values, just the
equations, or neither. The equations are based on the behavior of the channel, and therefore belong

3-56

Design issues

within this module. The choice of values could be considered part of the software requirements; they
affect the displays seen by the pilot, and are documented in section 4 of the requirements. However, the
choice of these particular values is partly influenced by hardware characteristics. Further, if they are not
hidden, the interface to this module becomes much more complex. We have chosen to hide all of the
information even though it means hiding some details about the required functions in this interface. We
assume that the test values are likely to change with the hardware and not for any other reason.

(10) We decided to hold user programs responsible for avoiding interference between the diagnostics and the
regular commands rather than build monitors into the I/O commands and diagnostics. The diagnostics
are not expected to be run when the software is doing anything else. Monitors impose a run-time cost in
the regular commands.

(11) We formerly had an access program parameterized by data item that returned a boolean telling whether
or not the last transmission of that item was successful. We replaced the program with built-in boolean
variables, because doing so lets the user avoid an unnecessary store operation in some cases. One such
case is when the user wants to use one of the builtins as a source and a <NOSTORE...> operand as the
other source. There may be others.

(12) We can generate more efficient code if we know beforehand which x_SUCCESS items will and will not
be accessed. We could have the user declare which ones he plans to use, but our translator software can
easily discover that anyway. Further, if the user gave an incorrect list, that would be a UE that our trans-
lator software would have to detect anyway.

(13) We could make it a UE for a user to assign a value to one of the x_SUCCESS booleans. However, the
user could do that via a pointer, and we wouldn’t detect that. Assigning a value to the variable does have
consistent (although not very useful) semantics, and we decided not to prevent it.

(14) EC refers to the Requirements Document for the definition of its i/o items. Some items are specified in
that document to be always preceded by a 0 bit. If we changed the defintion of those items (either in the
Requirements document or in this spec) to make that 0 bit part of the item, we could achieve some
efficiency gains in our implementation. For one thing, we wouldn’t have to issue instructions to zero out
that bit. This didn’t occur to us until fairly late in the project; for now, we choose not to go back and
take advantage of this ‘‘trick"; however, we may decide later that we need the efficiency bad enough to
go back and re-define our i/o items. This design issue is to record the possibility, and the fact that we
wish we had thought of it sooner.

3. EC.MEM

(1) We considered dividing memory into banks that would be tested separately, allowing partial rather than
complete shutdown. We decided not to do so at this time because the system lacks the ability to exploit it
and we could do so easily in the future.

(2) A previous design implied that invoking the access program associated with a test actually started the
test. Because future computers may have tests ongoing, or running in the background, we changed our
design to indicate that invoking a program merely returns the most recent result of that test. If a future
computer is required to start a test at a certain time, we can add start-test commands later. Returning the
value may take a substantial amount of time in some cases. The major change this caused was in the case
of the memory test. Before, there was a command to start the test, an event signalled when it was done,
and a program to retrieve the result. The motive was that the invoking program would want to do some-
thing else while waiting for the test to be completed. However, some program would have to wait idly
for the event to occur anyway, and so we lose nothing by letting the memory test program just take a long
time to return. We gain a uniform interface, with no special cases.

4. EC.PAR.1

(1) In earlier designs of this interface, timing constraints were associated with specially designated blocks,
implying that these blocks were the scheduling units. The process mechanism was unnecessarily compli-
cated, put too many restrictions on the internal structure of processes, and gave away more information
than the one here.

3-57

Design issues

(2) We considered having START and STOP commands so that one process can explicitly affect the
ready/waiting state of another process. The problem with a STOP command is that a process cannot be
safely stopped at any arbitrary point. We fixed this by adding "homing points", but specifying homing
points also cluttered up the algorithm descriptions. So we dropped the idea, relying on more conven-
tional synchronization mechanisms instead.

(3) Earlier versions made an outer "do forever" loop implicit. Thus the process would execute a "INIT"
block once whenever the process was started and then repeatedly execute a "FREQ" block until the pro-
cess was stopped. We have decided not to include an implicit loop because we do not want to limit the
internal structure of the processes. Also, the process would be easier to read if all the control was shown
explicitly. Process bodies can now be specified just as subprogram bodies are, making the overall
specifications of the Extended Computer simpler.

(4) At one point we had intermittent processes wait for a start event and then run until a stop condition
existed. We found it simpler to define a single boolean and have the process pass its start point only
when the boolean was true. This eliminated the need for the event interface in the EC and eliminated
ambiguous cases such as the start event ocurring when the stop condition held.

(5) At one point we had a special class of processes called init processes. We recognized these as a special
case of Demand processes and decided to simplify the interface by exploiting that fact. This allows some
processes to be used both as init processes and under other conditions.

(6) It is possible for a programmer to write a process that runs out of statements to execute. We considered
three alternatives for demand processes:

(a) Stating that it is an undesired event for a process to finish, i.e., making it a requirement that each pro-
cess contain an infinite loop;

(b) Assuming that a completed process is in the ready state, but that it has a null statement list to execute
if it becomes running;

(c) Assuming that a completed process is in a waiting state, waiting for an event that will never occur.

We rejected (a) because it builds too much information into the Extended Computer and it is an unneces-
sary restriction. We rejected (b) because there is no point in having a completed process compete for a
processor. Alternative (c) is a reasonable compromise for the Extended Computer interface. If it is con-
sidered undesirable to have completed processes, this should be prohibited by programming conventions.

For periodic processes, it is a UE because we introduced the way for the writer of the process to turn it on
and off.

(7) We have decided not to include relative priorities for the different processes because fixed priorities do
not generally work when there are real-time constraints.

(8) In an earlier version, we had no distinction between periodic and demand processes because a periodic
process can be viewed as one that waits for a particular stimulus, i.e., the passage of a particular amount
of time. However, one of the timing parameters needed for periodic processes is not useful for demand
processes. In addition, periodic processes must have restrictions on the synchronization operators within
the periodic loop because the indeterminate wait associated with synchronization operators makes it
difficult to prove that the loop can be scheduled regularly as required.

(9) In an earlier design, we did not explicitly distinguish intermittent periodic processes. We now distinguish
them in order to increase the likelihood that we can take advantage of the intermittency in the scheduling
of processes. Earlier we distinguished them by calling them intermittent, now we use the presence of the
ON/OFF parameter to distinguish them.

(10) We considered specifying periodic processes in terms of frequency rather than in terms of time intervals.
Because we wanted to specify the deadline as an interval, we decided it would be more straightforward to
use two intervals. These two parameters adequately constrain the variations in regularity.

(11) We have an undesired event assumptions that says there won’t be too many demand processes for a
periodic process to miss its deadline. The assumption is worded with that orientation because it is impos-
sible to tell how often a demand process must run.

(12) We used to allow the body of a process to be any statement list. We now restrict it to a call on a
previously-declared program. In this way we maintain a clear distinction between process and program,

3-58

Design issues

and therefore allow future extensions to include run-time creation of processes without run-time creation
of programs, vice versa. The restriction does not restrict what we can do with the current version; it
merely paves the way for future extensions.

(13) Previously, there was a parameter in the process definitions with which the user specified the maximum
CPU time required by his process. We removed this from the high-level EC interface because (a) the
user doesn’t have enough information to provide it; (b) the information is machine-dependent; and (c) the
length of time an operation takes can vary greatly, depending on the storage and representation of the
operands, for example. This is information is now provided to the EC implementation at a lower level,
where the processes are divided into scheduling blocks; it may be provided by software that examines the
code, or it may be done manually.

(14) Why do periodic processes need both a semaphore to begin and an on/off boolean to start/stop them?
The semaphore is there in order to allow us to stage the initialization. During initialization we may want
some of the processes to complete their initial sections before others begin. We do that by letting them
signal the starting event for the others. We may want a process to initialize but not start its intermittent
execution. If we tried to use the boolean to do that there would be critical timing about the question of
when to turn it off. Once the starting event becomes non-negative, it is never looked at again. (DLP
9/24/85)

5. EC.PAR.2

(1) Regions with an exclusion relation were selected for Extended Computer synchronization primitives
because

(a) they allow concurrency constraints to be expressed directly rather than as an implication of run time
synchronization;

(b) they express the exclusion relationships in a form that can be interpreted efficiently by a pre-run-time
scheduler;

(c) there is an algorithm for generating run-time synchronization from the exclusion relations;

This is the simplest acceptable alternative. Rejected alternatives included:

(a) disabling interruption: once an identified section of code starts executing, it must run to completion.
This alternative was rejected because it is prejudiced toward a single processor: it overly restricts the
parallelism by stating that no other actions can be taken simultaneously with the code section, rather than
specifying which other actions may not be taken;

(b) simple mutual exclusion: specifies all exclusion relations as equivalent, i.e., a section of code that
excludes any other excludes all others. This alternative still places too many restrictions on the parallel-
ism because many of the identified code sections need not exclude each other.

(c) named regions with mutual exclusion. Rejected because it assumes that the exclusion relation is
symmetric.

(d) exclusion via synchronization primitives: using synchronization primitives such as those in
EC.SMPH to effect mutual exclusion. Rejected because (1) synchronization primitives that are being
used for other interprocess synchronization or communication purposes cannot be distinguished from
those used for exclusion without additional commentary, (2) the exclusion requirements are implicit in a
solution based on synchronization primitives, rather than stated explicitly as they can be with identifiable
regions, and (3) the exclusion information (implying scheduling constraints) is embedded in and scattered
throughout the text. These properties of the synchronism primitives make it difficult to do pre-run-time
scheduling without substantial preprocessing.

(2) Many useful forms of synchronization were rejected for the Extended Computer because they do not
depend on the implementation of parallel process. Application-oriented synchronization operations may
be developed using the exclusion relations, and semaphores.

(3) Can a region be excluded from itself? Is that useful? Yes, because in the case of non-reentrant code, this
is how we will probably prevent disastrous re-invocations.

3-59

Design issues

(4) We adopted the REGION/END_REGION syntax (as opposed to a single REGION program that takes a
statement-list as a parameter) because we did not want to require that regions nest.

6. EC.PGM.1

NOTE: Design issues 1 through 7 refer to a previous control structure we had included in the EC which is
documented informally in [APC]. That control structure is no longer a part of EC, because we concluded that it
required too much sophistication in implementation, and that simpler constructs hid the hardware characteris-
tics just as well.

(1) Alternatives considered for the syntax of a guard are shown below.

(a) Boolean variables or constants only. All the boolean variables must be assigned values before the
limited program is executed.

(b) Any sequence of statements assigning a boolean value to a special guarded command register.

(c) Allowing a limited program list as a guard.

(d) Allowing a program to define the value of a guard (defined guards).

(e) All of the above.

We chose (e). The semantics can easily be defined formally [ITTI2]. Defined guards save code by
avoiding duplication of statement lists, which would otherwise be required because of syntactic limita-
tions.

(2) We chose to have the Extended Computer provide the IT-TI construct rather than the more common IF-
THEN-ELSE, CASE, and DO-WHILE constructs because IT-TI serves for all purposes. It allows some
programs to be written as one loop that would otherwise require several, thereby saving variables and
predicate evaluation. IT-TI has a mathematical semantics that allows systematic construction of the
program’s function [ITTI1].

(3) Dijkstra’s guarded commands are nondeterministic; of the true guards, only one is selected, but there are
no rules defining which one is selected. We chose a deterministic construct because they allow simpler
guards.

(4) We considered providing a FOR command (FOR I = 1 to 10 DO...) but decided against it because a. the
same purpose can be served with the IT-TI command; b. many special cases and questions arise with
the FOR command.

(5) We considered having an implicit final LP of the form (true,SKIP). We decided not to do this in order to
encourage the programmer to consider every case carefully.

(6) Should statement lists be allowed to contain declarations, and what is their scope? We decided that it
was harmless (from this module’s point of view) to allow it. The scope of all declarations is global and
items must be declared before they are used, but these are issues belonging to the EC submodules that
provide the declarations.

(7) In an earlier version we allowed Dijkstra’s cor and cand. We have eliminated them because the same
effect can be obtained with the use of defined guards.

(8) It is not a UE for an !!exit connector!! to contain the same exit twice (as long as no conflict results), nor
for an !!exit connector!!’s !!interval!! to specify an empty range. Both conditions are harmless, and may
result normally from automatic code generation.

(9) The ++PAR++ operation has been added, deleted, and added again to the EC. It was originally part of
the it-ti control construct, no longer used. When it-ti was removed, so was ++PAR++ because we
believed that we could accomplish the same objectives with destination lists and operand lists. However,
++PAR++ allows us to make one kind of optimization that we couldn’t make before — namely, allowing
more than one data item that lives in a single TC-2 word to be read/written with the same instruction.
There may be other re-ordering optimizations of which we are not yet aware. To make the user exploit
this capability, we need to tell him (in the Efficiency Guide) that he should batch his reads and writes, if
the items live in the same word. Otherwise, doing so may actually be more expensive because it will
force him to use temporaries (rather than NOSTORE). That means the user of this implementation of the

3-60

Design issues

EC has to know what items live in the same word. However, that information will not allow him to write
incorrect programs even if that information should change, and so our abstraction is preserved.

(10) It is a UE to introduce a name for a label that is already in use as the name of some other kind of object,
but not an error to re-use label names in different constructed programs. The reason is that it is harmless,
and may be convenient for our users. When a label appears in an exit-connector, it of course refers to a
label within the same constructed program since we do not allow "inter-program" branching except out
of an exit and into an entrance. Therefore, labels are naturally "scoped" and re-using label names in dif-
ferent programs is harmless. We could easily have decided this issue the other way; it doesn’t appear to
matter much.

7. EC.PGM.2

NOTE: Design issues 1 through 3 refer to a design that allowed user-defined programs to have parameters.
Because the semantics of parameter passing do not depend upon the hardware, we concluded that users could
employ other facilities to achieve a parameter protocol (e.g., assignment before and after a program call).

(1) Should actual and formal parameters be specified by type class, specific type name, or using type attri-
butes such as range and resolution? We decided that type agreement should depend on the specification
chosen by the programmer. Other alternatives would force us to write separate programs for each
specific type or to include a parameter passing mechanism that would be more general than needed for
most cases.

(2) We added PARM_GIVEN because programs must be able to tell if an optional parameter was supplied
or not. We thought about making it a built-in value that any type of variable could take on; then pro-
grammers could ask, e.g., if p1=PARM_GIVEN. However, because output parameters can be optional,
we didn’t want programmers checking their "value".

(3) Programmers need not supply trailing commas when optional parameters at the end of a parameter list
are omitted. For example, instead of +pgm1+(a,b,,,) one may write +pgm1+(a,b). Besides the obvious
convenience, this will allow us to add optional parameters to the end of any access program parameter
list, yet not force all calls on that program to change.

(4) We added the feature of ranking programs’ access speed because the current computer has the capability
of doing fast subroutine linkages in certain areas of memory. Because a replacement machine may not
have such a capability, we made the relationship "not-slower-than", which we can trivially implement by
doing nothing. We make no firm promise about the ordering, however, because we recognize that we
cannot make access to a subroutine not-slower-than access to an expanded macro that simply lives in-
line.

(5) We considered giving the user the ability to specify whether a program was to be invoked by subroutine
linkage or in-line (macro) expansion. Howver, we realized that macro-expansion can be done indepen-
dently of the host machine, and hence is not an appropriate EC facility.

(6) We included the facility for program loadcons because it is theoretically possible to key in a new value
(body) for a program after load-time. However, such a facility would only be useful if (a) the new pro-
gram took exactly as much space as the one it replaced; or (b) there was plenty of extra space available in
the computer. Since (a) is machine-dependent and (b) is not true, we have not implemented program
loadcons in the Extended Computer.

(7) The Extended Computer provides both program variables and pointers to programs. Our current applica-
tion does not require both, and so only program pointers are implemented. Both are provided in the
design because of the usual analogy between programs and data. However, the difference between a data
variable and a program variable is that we provide operations to create new values of data variables at
run-time, whereas there are no such operations (e.g., composition, union) for programs. If our data had a
small number of values, all known at sysgen time, we could program only with data pointers and no vari-
ables. While that is not the case for data, it is the case for programs.

(8) We briefly flirted with the idea of not allowing users to use UEs as a !!source!!, or in a <REF...> or
<DEREF...> construct. For a while, doing so was an unimplemented feature. The reason was that if a
UE was used in such a way, the user’s program would behave differently on the production EC (in which

3-61

Design issues

the UEs are all removed) than it would on the check-out EC. However, that assumed that we would
always remove ALL UEs (i.e., all built-in pointers to UE-handling programs). We realized that we
could easily keep the ones that the user needed. The user knows that in the production EC, no UEs will
be raised, and so we assume he is smart enough not to use one of the built-in UE names in such a way as
to force us to keep it unnecessarily. This decision allows us to preserve two important principles -- a
program that works on the checkout EC will work on the production EC, and a built-in object looks just
like a user-defined object of the same kind.

(9) We thought about requiring all programs to be given using the !!typed literal!! format, but realized it
wasn’t necessary. As the initial value of a declaration, the spectype is given. When invoked directly as a
literal, the spectype information isn’t used. When used as a !!source!!, the spectype can be determined
from the spectype of the destination.

(10) It is not a UE to use the same entrance or exit names in different program spectypes. We thought it
might be convenient in some cases. It is also not an error is a program fails to include code to branch to
all of the exits associated with its spectype. Therefore, the user is able to define two spectypes, the exits
of the first of which are a proper subset of the exits of the second. This will allow the user to build some
upward compatibility into his programs because programs of the first spectype may be substituted for
programs of the second. This might be useful. However, we could easily have decided to make all
entrance and exits names unique; it doesn’t appear to matter much.

8. EC.PGM.3

(1) The UE "constant destination" comes in both sysgen and run-time flavors. It is a run-time UE because a
destination can be given via a pointer, and we cannot tell at sysgen time whether the pointer points to a
constant or not. It is a sysgen-time UE because sometimes we must guarantee to detect it at sysgen time
(e.g., for ++SET++).

(2) There are several ways to interpret the effects of system generation programs. Since we don’t allow
exit-connectors after a sysgen program invocation, it is clear that they are executed before run-time in the
order encountered in the source code. However:

(a) they might be executed before any code is compiled; thus, the values used in the compilation would
be the last ones computed in this pre-run-time execution. This has the effect of making all but the last
++SET++ of a particular variable meaningless, for example.

(b) they might be executed while the code is being compiled. Thus, the values used in compiling the
code would be the "current" values; i.e., the values as most recently set by the sysgen programs.

(c) they could be executed after the code is compiled, having no effect on the compiled code at all.

Clearly (c) is the least useful. In our opinion, (b) is the most useful. However, for a long time there was
an ambiguity in our specification that went unnoticed until the Extended Computer was implemented.
The implementation team interpreted the spec in the manner of (a). If we had more time, we would
change our implementation (and our design) so that (b) was the case. Note that such a change could pro-
duce an "upward compatible" EC; that is, using programs would still be correct if they were careful only
to ++SET++ values once.

9. EC.SMPH

(1) We originally had more complex synchronization operators that met many immediate demands of our
application. As we prefer the Extended Computer to be as application-independent as possible, we chose
synchronization operations for the Extended Computer primitives that would be as simple as possible, but
that could be used as building blocks for more specialized synchronization operators. For the more com-
plex synchronization operations, see the specifications of the Application Data Type module [ADT].

All of the following alternatives for the Extended Computer synchronization operations were rejected
either because they are more complex than the operations selected or because they can be built using the
operations selected.

3-62

Design issues

(a) P and V operations on semaphores;

(b) eventcounts [REED79]: Also rejected because we weren’t sure we would need them;

(c) P and V supplemented by eventcounts;

(d) UP, DOWN, and PASS supplemented by event variables. A simple generalization of event vari-
ables, event-booleans can be implemented in the Application Data Type module in a machine indepen-
dent way.

(e) V, DOWN, PASS, and eventcounts.

(2) At one point, we provided a semaphore-to-integer conversion program. These were deleted when we
could think of no reason to use it. If such a need arises, it would be a straightforward extension, allowing
upward-compatability between programs written now and later.

(3) This used to be a submodule of EC.PAR, because semaphores are used to synchronize processes. How-
ever, the secret of implementing them has nothing to do with processes, so semaphores belong in a
module of their own.

(4) An earlier version implied that an +UP+ operation would awaken the processes in turn and each awak-
ened process could execute, possibly downing the sempahore, thus blocking processes not yet awakened.
This is inconsistent with the formal definitions and would make programming more difficult (Which pro-
cess would +DOWN+ the semaphore? Also, this would have forced the use of regions to make sure that
all waiting processes were allowed to proceed after an +UP+.) The footnote that created this impression
has been removed. The binding definition is still the formal one, which holds that all processes in the
middle of a +PASS+ operation for a semaphore get to proceed.

(5) Should the EC decrement a semaphore that it just incremented to signal an event? We decided so for a
brief period, because it is not clear who else will if the EC does not. However, when a raised semaphore
gets decremented turns out to have subtle effects of when programs run. Which scheme you get is really
machine-independent. So we changed back to the old scheme, in which the EC merely increments the
semaphore; a user program must decrement it if it ever wishes to await on that event again. However,
this is one of those issues that refuses to die, and the next design issue discusses our current approach.

(6) We would like for programmers to be able to write code for processes that wait for an event (the sema-
phore to be incremented) without needing to assume anything about other processes in the system. Simi-
larly, we would like to be able to write the signalling program inside the EC without needing to know
anything about the processes that might wait on it such as how many such processes there may be. Thus
we exclude solutions such as providing a different semaphore on the interface for each waiting process or
doing one up-operation for each process that might wait, etc.

It turns out that there is no simple solution written entirely in terms of the d-operations (up/down/pass)
with these properties. The solution we used in the EC was to up a semaphore to signal an event.
Processes using the EC must had to down the semaphore to have it signaled again. This simply moves
the problem outside of the interface of the signaling module so the works are accessable. Processes must
still cooperate to use the event (decide who downs the semaphore) and additional synchroniztion opera-
tors must be created.

The problem is that we want to release all of the processes waiting on the semaphore (executing a pass)
without also allowing processes to proceed that were not waiting at the time the event occurred (includ-
ing processes that were originally waiting and have looped around and are executing the wait operation
again).

Although there is no solution strictly in terms of d-operations, the problem can be solved by providing a
region R on the signaling module’s interface associated with each semaphore S used to signal an event.
The module guarantees that the event will be signaled by a single up operation on S follwed by a single
down operation and that both operations will occur inside the region R. The region R can then be used to
prevent processes from executing a pass at the wrong time.

A process that wishes to wait for the event inside a loop and execute the loop exactly once for each
occurrence of the event must define a region R’ and an exclusion relation such that R excludes R’. As
long as the pass(S) is executed only inside the region R, it is guaranteed that only one pass will be exe-
cuted for each event.

3-63

Design issues

Note that a process can also execute the pass outside the regions if it wants to continue as long as the
semaphore is positive. This form is also useful, and corresponds to our "=T" events on other interfaces.
(Stuart Faulk, 4/23/87)

We disallow user regions excluding EC built-in regions so that no user can effectively disable the EC
event-signalling mechanisms.

10. EC.STATE

(1) The following transitions are not included in this interface for the following reasons:

off to failed: not relevant to user programs;
failed to off: user programs cannot respond to anything
operating to off: when the computer is off;

Note that failed to operating does not occur with the current computer; it must be cycled through "off" to
get back to operating from failed. However, future computers may make this transition possible (perhaps
by re-booting), and so this transition is subsumed by the definition of power up.

(2) There may not always be a grace period after @T(!+failed state+!). Two alternatives were considered: to
leave out the grace period altogether, or to include it as a system-generation parameter. We selected the
latter to allow for future use of an improved computer.

(3) How do we distinguish between malfunctions that user programs must detect and handle (possibly by
calling +S_FAIL_STATE+) and malfunctions that are detected inside the Extended Computer? Malfunc-
tions are detected by this module if they are reported by the computer without software action; for exam-
ple, malfunctions signalled by interrupts. Whenever a malfunction is detected because of an action dic-
tated by the requirements, such as a diagnostic test, detection is left to a user program. The malfunctions
described in various test programs (EC.PAR.1, EC.IO, EC.MEM, EC.TIMER) belong to the latter
category; all others, the former.

(4) Future technology may make our three-state model appear oversimplified, because a system may have
degraded states: that is, states without the full capability of "operating", yet not dead in the water like
"failed". A degraded state may occur in a single-processor system, or in a multi-processor system where
one or more processors have ceased to operate. It is important that acquiring this capability results in
adding to (not revising) the present specification. We cannot add a degraded state now because we can-
not implement it, and programs depending on it would be not be correct. However, we can plan for the
addition by assuming that there are "at least three states", etc.

(5) Which module is responsible for the close-down procedures? We decided that any shutdown action that
is required for every computer failure and is computer-dependent should be done by this module. If the
action is device-dependent, such as setting the bomb-release output to a safe value, it should be done by
the device interface module.

11. EC.TIMER

(1) In earlier versions, we had clocks and timers; clocks counted up and timers counted down. They were
completely distinct from timeint entities; they were declared separately and had their own set of opera-
tions. We removed the distinction as the interface grew and grew, and we realized that it would be both
useful and consistent to let a clock/timer do most anything that a timeint can do.

(2) We considered providing only clocks or only timers (in the sense of issue #1). Clocks are useful for
measuring elapsed time; timers are useful for detecting the end of a previously specified time interval.
We wanted the capabilities of both because otherwise user programs would have to use one to simulate
the other. This would lead to inefficiency and possible duplicate efforts especially on a computer that
provided both.

(3) We considered having this module offer a special "waittime" command, instead of using the general
semaphore mechanism. There seems to be no advantage in using a special mechanism for timed events.

(4) We considered treating the following actions as errors:

3-64

Design issues

- starting a running timer,
- setting a running timer,
- stopping a non-running timer,
- reading a non-running timer,
- stopping a timer that has run down,
- reading a timer that has run down,

but these actions are not necessarily senseless.

5. We considered having a timer signal a UE if it runs past its capacity. To have it start over seems the
most useful. Further, a timer might run past its usual limit, for no fault of the software. In contrast, set-
ting timer with too large a value is a clear software error. Therefore we made exceeding the maximum
capacity an undesired event in a set operation.

(5) In an earlier design, there was a single maximum capacity for all clocks and a single maximum for all
timers. It was pointed out that clocks and timers are used for very different purposes, some for measur-
ing very small changes over a small period of time, and some for keeping track of a long period of time,
with less concern for small changes. In order to achieve this flexibility without undue use of resources,
we decided to allow programmers to specify capacity and minimum measurements for individual timers
and clocks.

(6) In an earlier version, clocks could only be set to zero, but this seems unnecessarily restrictive. One of
our reviewers (D. Hill) said "I believe we may need a +SET_CLOCK+ for clock corrections or for time-
of-day clocks." The restriction went away when we merged timers and timeints.

(7) Timers used to be a submodule of what was called the "Sequential Execution" module, because program-
mers would presumably want to transfer control based on the value or action of a timer. However, the
secret of the timer module has nothing to do with flow of control, and so it became a module of its own.

3-65

APPENDIX B

Implementation Notes

1. EC.DATA

(1) If the user provides a subrange assertion, the information may be used to reduce the amount of operand
shifting necessary before an operation takes place.

2. EC.IO

(1) The part of the I/O submodule that handles the relation between data item names and TC-2 instruction
sequences should be a sysgen time program and should be table driven. It should be organized into sub-
modules in accordance with the structure of the Device Interface Module, because changes are likely to
be concentrated on individual devices.

3. EC.MEM None.

4. EC.PAR None.

5. EC.PGM.1 None.

6. EC.PGM.2

(1) This module does not determine where programs are located in memory. It uses programs in the memory
allocator module to request space.

(2) This module uses the System Generation module to do assembly-time parameter type checking.

7. EC.PGM.3 None.

8. EC.SMPH None.

9. EC.STATE None.

10. EC.TIMER None.

Implementation notes

APPENDIX C

Assumptions Lists

BASIC ASSUMPTIONS:

1.1. EC.DATA

(1) The Extended Computer can provide a way to compute a result without storing it into a declared vari-
able. Access to this result will usually be quicker than access to other variables.

(2) The attributes of a value will be known whenever a variable is used as a source or a destination. If the
attributes specified for the variable when it is used as a source are not the same as were specified when
its value was determined, the result may be any value.

(3) The Extended Computer can store numeric quantities with any desired range and resolution. It can be
expected that (a) variables with a small range-to-resolution ratio will require less actual memory space
than variables with a large range-to-resolution ratio, and (b) that operations on such variables will be
faster than operations on variables with a larger range-to-resolution ratio.

(4) Range and resolution are adequate characterizations of a numeric variable; i.e., the needs of an appli-
cation programmer can be adequately expressed by a lower bound, upper bound and guaranteed reso-
lution.

(5) The Extended Computer can store bitstring quantities of any desired length, up to a limit known at sys-
tem generation time. Longer bitstring entities may require more storage than shorter ones. Operations
on longer bitstring entities may require more computer time than operations on shorter ones.

(6) Whenever a numeric value is stored into a variable with a resolution different from the source, the
value stored should always be the closest value that can be represented in the destination. The pro-
grammer need not specify the conversions to be made; the best choice can be made by the EC imple-
mentation.

(7) There is no need for operations that allow a bitstring value of one length to be assigned to a bitstring
variable with a different length.

(8) The operations needed for calculating new numeric values are addition, multiplication, division, sub-
traction, absolute value, complement and conversions.

(9) Division may result in a loss of all significance. This danger cannot be hidden entirely from the pro-
grammers, since they may have information that can be used to choose safe, efficient algorithms. The
following division options are sufficient:

a. The quickest division can be performed if the programmer provides an upper bound for the result.
The better the bound, the more significance is preserved. If the bound is too low, all significance may
be lost.

b. A slower algorithm can be used if the programmer cannot provide an upper bound.

c. If the programmer cannot provide an estimate of the maximum result and prefers to avoid the
expense of the slower algorithm, the Extended Computer can determine whether or not division can be
safely performed. The EC can return the sign of the quotient even when the operation cannot be safely
performed.

(10) For any variable, it is always possible to implement a uniform resolution over the entire range of that
variable.

(11) Whenever the program compares two numeric operands for equality, programmers need to define a
threshold, such that if the difference between two numbers is less than or equal to the threshold, the

Assumptions

Assumptions

numbers are considered equal.

(12) It is acceptable for the results of an operation to have a larger resolution than the resolution of the des-
tination. The approximations needed to store the result can be assumed to be acceptable for the appli-
cation.

(13) Only four kinds of entities are needed: variables, which can be changed at any time; ascons and
literals, which can be changed by reassembling the program; and loadcons, which can be changed
when the program is first loaded into the computer but not while it is running.

(14) The following operations are sufficient for efficiently producing new bitstring values from existing bit-
string values:

a. AND, OR, NAND, NOT, MINUS, and XOR, defined in the usual way, operating on corresponding
bits in two operands of equal length;

b. SHIFT operation: A bitstring is shifted either right or left a specified number of bits with zeros
shifted into positions vacated by the shift;

c. REPLACE operation: A portion of a bitstring is replaced by the value found in an equal-length
portion of another bitsring;

d. CAT operation: A bitstring is formed by concatenating two previously existing bitstrings.

(15) If the result of converting a real to a bitstring has more bits than the bitstring operand, the bits to the
right of the rightmost bit of the destination bitstring may be ignored.

(16) Arrays with dimensions that vary at run time are not needed in avionics applications.

(17) Avionics applications do need arrays in which the type class is real, and the elements are variables
with attributes that may vary independently of the attributes of other elements of the same array.

(18) Arrays in which the indices are not a contiguous subset of the integers are not needed in avionics
applications.

(19) Avionics applications need to take advantage of any capability that the computer has to allow faster
memory access to certain data. The Extended Computer can implement a "not-slower-than" relation
for any two declared entities x and y, so that x will be accessed no slower than y. User programs can
determine desired rankings at system generation time; it is not necessary to change the rankings at
run-time.

1.2. EC.IO

(1) The only information needed by user programs to identify inputs or outputs is the data item name
given in the requirements document [REQ]. It is possible to characterize all transmissions between the
Extended Computer and its associated hardware as either input or output.

(2) Input data items and output data items are bitstring entities. Some can only be used as a source in a
statement (read-only); some can only be used as a destination in a statement (write-only); some can be
used as either (read-write). No input data item is write-only. No output data item is read-only.

(3) It is possible to turn off (disable) input/output transmissions. A disabled data item has no effect on and
is not affected by the external environment.

(4) No application program will need the identity code and subitem identifiers in Serial Input Register
Data (see [REQ]).

(5) It is possible for the software to determine the success of I/O operations. (Of course, this assumption
is obviously false if we consider hardware failures. However the correctness of our software is con-
tingent on that assumption.) An unsuccessful operation may not change the value of the associated
data item.

(6) Some input data items are only available intermittently and the EC can notify user programs when new
values for such data become available.

(7) Each i/o operation can be guaranteed to complete within a fixed period of time. This worst-case tim-
ing requirement varies among data items; the time associated with each data item can be determined at

3-68

Assumptions

system-generation time.

(8) Each channel diagnostic program may interfere with a specified subset of the input/output commands.
They will not interfere with any other commands.

(9) Use of either the discrete diagnostics or the accelerometer-torque diagnostics may cause the IMS to
lose its alignment and velocities (i.e., have the same effect as disabling the IMS temporarily).

(10) The following aspects of the input/output can be tested independently:

the AC aspects of the signal converter channel,
the DC aspects of the signal converter channel,
the cycle steal channel A and serial input channel 1,
the cycle steal channel B and serial input channel 2,
discrete input word 1 and discrete output word 1,
discrete input word 2 and discrete output word 2,
discrete input word 3 and discrete output word 3,
the IMS gyro torque registers and the accelerometer accumulators.

1.3. EC.MEM

(1) A memory diagnostic program can check whether portions of memory are reliable. This program does
not interfere with other programs. The test may take a substantial amount of time to complete.

1.4. EC.PAR.1

(1) Processes (executions of programs) may execute in parallel with no restrictions on their relative
speeds, except where they are explicitly synchronized with each other (see EC.PAR.2).

(2) The number of processes need not vary at run-time. It may be set at system generation time.

(3) All demand processes can start when the system is turned on (i.e., when @T(!+power up+!) occurs);
some will perform initialization routines; the remaining demand processes will wait for a semaphore to
become nonnegative.

(4) The process mechanism will be able to detect the event @T(!+power up+!).

(5) Processes are not called as subroutines by other programs and do not return control to other programs.

(6) We need only distinguish two process states: active or suspended. Only an active process can pro-
gress. A suspended process is ineligible to progress (continue execution).

(7) The state of a process changes between active and suspended only when it uses the process synchroni-
zation mechanisms described in sections EC.PAR.2 and EC.SMPH or when it has executed the last
statement in its body.

(8) All processes are either periodic or demand and exist throughout the life of the system;

The bodies of periodic processes are to be executed at regular intervals (their period). The period of a
process may change during system execution. A periodic process may be suspended when a specified
boolean variable is false and start again when it is true.

Demand processes wait for a semaphore to be nonnegative. They should be executed each time the
semaphore is incremented. They will decrement the semaphore once per execution.

(9) Demand processes can be adequately characterized by specifying the values of two timing parameters:
maximum CPU time requirement and deadline for completion.

(10) Periodic processes are adequately characterized by three timing parameters: maximum CPU time
requirement, deadline, and period.

3-69

Assumptions

1.5. EC.PAR.2

(1) User programs may contain contiguous sections or regions of run-time-executable statements that may
not be executed concurrently. These concurrency constraints can be expressed in terms of an exclu-
sion relation on the regions, i.e., where region 1 excludes region 2 if region 2 may not start while
region 1 is executing.

(2) Regions may overlap other regions or be embedded in other regions.

1.6. EC.PGM.1

(1) The only sequence control constructs needed are those that choose a path based upon the results of the
invocation of a program.

(2) The number of entrances and exits of a program is finite, and the upper bound can be determined at
system generation time.

1.7. EC.PGM.2

(1) Some program entities should be invoked faster than others. Such a relation will not depend on when
the programs are invoked; the relative ranking can be determined at system generation time.

(2) It is not necessary to provide users with the capability to create programs that take parameters. Other
mechanisms available to him (such as assignment before and after the "body" of the program) suffice.

(3) It is necessary to provide facilities for recovery if a programming error is detected by a program during
execution. It is up to the author of a called program to determine what programming errors his pro-
gram can detect; it is up to the caller of a program to determine the action that should be taken if one
of those errors occurs. It is not necessary to pass parameters to the recovery program.

1.8. EC.PGM.3

(1) If a program will be reentered while already in use by another process, it is the responsibility of the
programmer to make sure that local storage is saved and restored as needed. EC programs are not
automatically provided with new storage when they are reentered.

(2) There is no need for a mechanism to allow programs to cause the calling program to resume execution
anywhere else than immediately after the call.

(3) The identity of a data entity that is passed to an EC access program as an actual parameter will not be
changed while the program is executing. For example, when an array element is passed as an actual
parameter to a program, if that program alters the value of the variables that determined the index, the
results will be undefined.

(4) The protocol for passing parameters can implemented in a machine- independent fashion.

1.9. EC.SMPH

(1) The only operations on semaphores that need to be executed in a way that guarantees non-interference
with other operations on semaphores are the following:

a. An operation that does not affect the counter value of the semaphore, but may put the process in
the waiting state.

b. An operation to decrement the semaphore counter without any effect on the state of the process
that executes it.

c. An operation to increment the semaphore counter that may put other processes in the active state.

3-70

Assumptions

1.10. EC.STATE

(1) The Extended Computer has at least three states: off, operating, and failed. Only the following transi-
tions between states affect user programs:

- from off to operating
- from operating to failed.

(2) User programs cannot cause the transition into the operating state.

(3) A transition from operating to failed can either be caused by user programs or occur when malfunc-
tions internal to the Extended Computer are detected. These internal malfunctions are other than those
described in test programs contained in EC.PAR.1, EC.TIMER, EC.MEM, and EC.IO. It should be
assumed that after this transition occurs, user programs will have at least a short interval to execute
shut-down sequences before the computer stops operating. The minimum length of the interval before
shut-down can be determined at system-generation time.

(4) Any actions that must be taken when a computer failure occurs are independent of the state of the user
programs, and can be built into the EC.

1.11. EC.TIMER

(1) Avionics programs need timers that keep track of elapsed time, and that may signal when a given time
interval has elapsed. They need to be able to set a timer to a starting value, start it, stop it, and read it
whether it is running or not.

(2) The maximum timing capacity of a clock or a timer can be determined at system generation time.

(3) If a timer runs beyond a limit specified at run time, it should either halt or start over. Sometimes it
should signal that a range limit has been reached.

(4) The worst acceptable error rate for all timers can be determined by users at system generation time.
This error can be specified as a fraction of the running time, plus a constant error independent of the
running time..

(5) Any number of timers can be implemented, provided that the number is known at system-generation
time. There is no need to create or delete timers at run time.

(6) There are diagnostic programs that can test the hardware timers and the interrupt mechanism
separately, but may interfere with proper execution of other programs.

3-71

Assumptions

ASSUMPTIONS ABOUT UNDESIRED EVENTS

2.1. EC.DATA

(1) User programs will not divide by zero.

(2) The result of any operation will not be outside the range of the destination variable.

(3) In a replace operation, user programs will not specify positions that do not appear within bitstrings or
specify a substring with a start position that is higher than the stop position.

(4) After converting a numeric value to a bitstring, there will be no bits to the left of the most significant
bit of the destination bitstring.

(5) Users will not supply a parameter in an array reference that is not in the index set of the array.

(6) Users will not fail to initialize a variable before its value is used in an operation.

(7) Users will not provide a range assertion about a variable that turns out to be false.

2.2. EC.IO

(1) User programs will not attempt to use an enabled read-write input data item as a !!destination!! or use
an enabled read-write output data item as a !!source!!.

(2) User programs will not disable (enable) a data item that is already disabled (enabled).

2.3. EC.MEM None.

2.4. EC.PAR.1

(1) Demand processes will not need to run so often as to cause a periodic process to miss its deadline.

(2) A periodic process will have a period greater than its deadline.

(3) A process will not be given a deadline that is shorter than the time it takes to execute.

2.5. EC.PAR.2 None.

2.6. EC.PGM.1

(1) Every program exit that will be chosen during execution will be connected to a succeeding command.

2.7. EC.PGM.2

(1) A user will not fail to assign a value to a built-in EC program variable.

2.8. EC.PGM.3

(1) A program will not invoke itself.

2.9. EC.SMPH

(1) There is a range of values that will suffice for all semaphores, and will not be exceeded by user pro-
grams.

3-72

Assumptions

2.10. EC.STATE.3 None.

2.11. EC.TIMER None.

3-73

APPENDIX D

Unimplemented Extended Computer Features

Not all of the capabilities described in this document have been provided in the current version of the
Extended Computer. A few facilities, which are not currently needed by the application program, have not
been implemented. An attempt to use an absent facility will result in an undesired event in the development
version. The unimplemented features are described below.

1. Unimplemented features applying to more than one EC submodule

1.1. Undesired event detection in the production EC

Undesired event: None

Current use:
In the production version of the Extended Computer, no undesired events will be checked for. It will
be assumed that user programs will invoke the EC facilities correctly.

1.2. Pointers pointing to a timer

Where described: EC.DATA.2.4, EC.TIMER.

Undesired event: %%unimplemented timer ptr%%

Current use:
A pointer may not be made to point to a timer.

1.3. Some forms of varying-type entities

Where described: EC.DATA, EC.PGM.2, EC.SMPH, EC.TIMER

Undesired event: %%unimplemented binding%%

Current use:
In the ++DCL_TYPE_CLASS++, ++DCL_ENTITY++ and ++DCL_ARRAY++ programs, if the
type_list has more than one element, they must all be spectypes of the real typeclass. No other kind of
entity is allowed to change its attributes, and no entity can assume attributes of more than one
typeclass.

1.4. Invoking non-constant programs in a periodic process

Where described: EC.PGM.2, EC.PAR.1

Undesired event: %%unimplemented non-constant pgm in p proc%%

Current use:
Only a program constant, or a constant pointer to a program constant, may be invoked as part of a
periodic process.

Unimplemented features

Unimplemented features

1.5. Using variables to specify attributes

Where described: EC.DATA.3, EC.SMPH.3, EC.TIMER.3

Undesired event: %%unimplemented attribute via variables%%

Current use:
To specify an attribute (as defined in EC.DATA.3), a timer-attribute (as defined in EC.TIMER.3), or a
semaphore-attribute (as defined in EC.SMPH.3), literals or ascons must be used.

1.6. Detection of %uninitialized entity%

Where described: EC.DATA, EC.PGM.2

Undesired event: None

Current use:
%uninitialized entity% will not be detected, even in the development version. If a user fails to assign a
value to an entity or array element that was declared with initial value UNDEF before he uses it, the
behavior of his program is undefined. There is a built-in program pointer by that name, as for other
UEs, but it will never be invoked by the EC as a result of detecting the error condition associated with
it.

1.7. Pointers to programs that have parameters or more than one entrance.

Where described: EC.DATA, EC.PGM.2

Undesired event: %%unimplemented pgm ptr%%

Current use:
A pointer may only refer to user-defined programs with one entrance, or to parameterless EC access
programs.

1.8. !!list!!s of operands to EC access programs.

Undesired event: %%unimplemented operand list%%

Current use:
An !!actual parameter!! may not be a !!list!! of !!actual parameter!!s, as described in EC.DATA.2.4.3,
unless the !!actual parameter!! is a !!destination!!. In that case, section EC.DATA.2.4.2 applies.
%%list mismatch%% will not be detected.

2. EC.DATA Unimplemented Features

2.1. Specifying substrings of bitstrings with variables

Undesired event: %%unimplemented variable substring%%

Current use:
In the bitstring +REPLC+ program, p2, p3, and p4 must be given by literals or ascons.

2.2. Specifying a bitstring shift length with a variable

Undesired event: %%unimplemented variable shift length%%

Current use:
In the +SHIFT+ program, p2 must be given by a literal or an ascon.

3-75

Unimplemented features

2.3. Varying the EXACT_REP attribute for numeric types.

Undesired event: %%unimplemented varying EXACT_REP%%

Current use:
If a type is declared to be of more than one spectype, then the spectype_list is not allowed to contain
both a spectype that has the EXACT_REP attribute and a spectype that does not.

2.4. Using the EXACT_REP attribute for some resolutions

Undesired event: %%unimplemented EXACT_REP resolution%%

Current use:
For a type to have the EXACT_REP attribute, its resolution must be an exact integer power of two (for
reals) or two milliseconds (for timeints).

2.5. Checking parameter type when it is given by a pointer

Undesired event: None.

Current use:
If an !!actual parameter!! is given by naming a pointer to an entity, and that entity is not of the proper
type as required by the program being invoked, the result will be unpredictable; no UE will be raised.

2.6. Checking for %constant destination% with pointers

Undesired event: None.

Current use:
If a !!destination!! is given by naming a pointer to an entity, and that entity is not a variable, the result
will be unpredictable; %constant destination% will not be raised.

2.7. Giving !!user threshold!! as a variable

Undesired event: %%unimplemented variable threshold%%

Current use:
The !!user threshold!! parameter of the numeric comparison programs must be given by a literal or an
ascon.

2.8. Detecting %wrong attributes%

Undesired event: None.

Current use:
This undesired event will not be detected. If a program executes such that the UE would be raised
were it detected, the effect of that program shall be undefined. There is a built-in program pointer by
that name, as for other UEs, but it will never be invoked by the EC as a result of detecting the associ-
ated error.

2.9. +B_REAL_BCD+

Undesired event: %%unimplemented pgm%%

Current use:
These programs may not be called.

3-76

Unimplemented features

2.10. Arbitrary length bitstrings in +R_BITS_BCD+

Undesired event: %%unimplemented +R_BITS_BCD+ bits length%%

Current use:
p1 of +R_BITS_BCD+ must have a length that is an exact integer multiple of four.

3. EC.IO Unimplemented Features

3.1. Enabling/disabling i/o data items

Undesired event: %%unimplemented enable/disable%%

Current use:
+DISABLE+ or +ENABLE+ may not be called. The UEs %already enabled% and %already dis-
abled% are not detected, and there are no built-in EC program pointers for error handling by those
names.

3.2. Using variable or loadcon to access //FLTREC// elements

Undesired event: %%unimplemented non-const fltrec access%%

Current use:
In an <EL index //FLTREC//> operand, the index must be given by a literal or ascon.

4. EC.PAR Unimplemented Features

4.1. Periodic processes with periods that vary at run-time

Undesired event: %%unimplemented variable period%%

Current use:
The !!period!! parameter in ++P_PROCESS++ must be given as an ascon or a literal.

4.2. Periodic processes with deadlines that vary at run-time

Undesired event: %%unimplemented variable deadline%%

Current use:
The !!deadline!! parameter in ++P_PROCESS++ or ++D_PROCESS++ must be given by an ascon or
literal.

4.3. Regions in programs invoked through pointers

Undesired event: %%unimplemented region in ptr-invoked pgm%%

Current use:
If programs that are invoked through pointers contain regions, the programs must contain equivalent
regions. Two regions are considered equivalent if they have the same exclusion relations. For
scheduling purposes, two such programs are also assumed to have the same maximum running time.

5. EC.PGM Unimplemented Features

3-77

Unimplemented features

5.1. Certain multi-exit built-in EC access programs

Undesired event: %%unimplemented multi-exit EC access program%%

Current use:
Only EC access programs computing a single output parameter that is real or boolean have more than
one exit as described in EC.PGM.1.2.1. Invocations of other EC access programs that compute a single
result must be followed by a null !!exit connector!! or one consisting of a single port.

5.2. Invocations of user-defined programs in !!par program!!

Undesired event: %%unimplemented user pgm in PAR%%

Current use:
Only !!invocation!!s of EC access programs may occur in the call-list of a !!par program!!.

5.3. Program loadcons and variables

Undesired event: %%unimplemented pgm loadcon/variable%%

Current use:
++DCL_ENTITY++ or ++DCL_ARRAY++ may not be invoked with p2 containing a program spec-
type if p3 = LOADCON or VAR.

3-78

APPENDIX E

Input/Output Data Item Names

The following table lists all data items available from the A-7E version of the Extended Computer, and
tells whether each one is read-only (R), write-only (W), or read-write (RW). The spectype of each is
formed by removing the / or // brackets, and suffixing _type. For example, the spectype of /AOA/ is
AOA_type.

Input data items Output data itemsii
Item name R/RW Item name R/RWii
/ACAIRB/ R //ANTSLAVE// W

/ADCFAIL/ R //ASAZ// RW

/AOA/ R //ASEL// RW

/ANTGOOD/ R //ASLAZ// RW

/ARPINT/ R //ASLCOS// RW

/ARPPAIRS/ R //ASLEL// RW

/ARPQUANT/ R //ASLSIN// RW

/BAROADC/ R //AUTOCAL// W

/BMBDRAG/ R //AZRING// RW

/BRGSTA/ R //BAROHUD// RW

/DIMWC/ R //BMBREL// W

/DGNDSP/ R //BMBTON// W

/DRFTANG/ R //BRGDEST// W

/DRSFUN/ R //COMPCTR// W

/DRSMEM/ R //COMPFAIL// W

/DRSREL/ R //CURAZCOS// RW

/ELECGOOD/ R //CURAZSIN// RW

/FLYTOTOG/ R //CURENABL// W

/FLYTOTW/ R //CURPOS// RW

/GUNSSEL/ R //DESTPNT// RW

/HUDREL/ R //ENTLIT// W

/IMSAUTOC/ R //FIRRDY// W

/IMSMODE/ R //FLTDIRAZ// RW

/IMSREDY/ R //FLTREC// W

/IMSREL/ R //FPANGL// W

(blank) - //FPMAZ// RW

(blank) - //FPMEL// RW

(blank) - //GNDTRK// W

/KBDINT/ R //GNDTRVEL// W

/LOCKEDON/ R //HUDAS// RW

/MA/ R //HUDASL// RW

/MACH/ R //HUDFPM// RW

/MAGHCOS/ R //HUDPUC// RW

/MAGHSIN/ R //HUDSCUE// RW

/MFSW/ R //HUDVEL// RW

/MODEROT/ R //HUDWARN// RW

/MULTRACK/ R //IMSNA// W

/PCHCOS/ R //IMSSCAL// W

/PCHSIN/ R //KELIT// W

I/O Data Items

I/O Data Items

Input data items Output data itemsii
Item name R/RW Item name R/RWii

/PMDCTR/ R //LATGT70// W

/PMHOLD/ R //LFTDIG// W

/PMNORUP/ R //LLITDEC// W

/PMSCAL/ R //LLITE// W

/PMSLAND/ R //LLIT322// W

/PNLTEST/ R //LLITW// W

/PRESPOS/ R //LSOLCUAZ// RW

/RADALT/ R //LSOLCUEL// RW

/RE/ R //LWDIG1// W

/RNGSTA/ R //LWDIG2// W

/ROLLCOSI/ R //LWDIG3// W

/ROLLSINI/ R //LWDIG4// W

/SINEVEL/ R //LWDIG5// W

/SINHDG/ R //LWDIG6// W

/SINLAT/ R //LWDIG7// W

/SINLONG/ R //MAGHDGH// RW

/SINNVEL/ R //MAPOR// RW

/SINPTH/ R //MARKWIN// RW

/SINROL/ R //PTCHANG// RW

/SLEWRL/ R //PUACAZ// RW

/SLEWUD/ R //PUACEL// RW

/SLTRNG/ R //RNGHND// W

/STA1RDY/ R //RNGTEN// W

/STA2RDY R //RNGUNIT// W

/STA3RDY/ R //ROLLCOSH// RW

/STA6RDY/ R //ROLLSINH// RW

/STA7RDY/ R //STEERAZ// W

/STA8RDY/ R //STEEREL// W

/TD/ R //STERROR// W

/TAS/ R //TSTADCFLR// W

/THDGCOS/ R //ULITN// W

/THDGSIN/ R //ULITS// W

/UPDATTW/ R //ULIT222// W

/WAYLAT/ R //ULIT321// W

/WAYLON/ R //USOLCUAZ// RW

/WAYNUM1/ R //USOLCUEL// RW

/WAYNUM2/ R //UWDIG1// W

/WEAPTYP/ R //UWDIG2// W

/XGYCNT/ R //UWDIG3// W

/XVEL/ R //UWDIG4// W

/YGYCNT/ R //UWDIG5// W

/YVEL/ R //UWDIG6// W

/ZGYCNT/ R //VERTVEL// RW

/ZVEL/ R //VTVELAC// RW

//XCOMMC// RW

//XCOMMF// RW

//XGYCOM// W

//XSLEW// W

//XSLSEN// W

//YCOMM// RW

//YGYCOM// W

//YSLEW// W

//YSLSEN// W

//ZGYCOM// W

3-80

I/O Data Items

Input data items Output data itemsii
Item name R/RW Item name R/RWii

//ZSLEW// W

//ZSLSEN// W

Note: //FLTREC// is an array; the number of elements is given by the integer system generation
parameter #nbr fltrec elements#.

The following data items have events (signalled by incrementing a semaphore) associated with them:iii
Event Semaphore Regionii
@T(!+/ENTERSW/ occurred+!) ENTSWSEM ENTSWMEM_reg
@T(!+/KBDENBL/ occurred+!) ENBLSEM ENBLSEM_reg
@T(!+/MARKSW/ occurred+!) MARKSEM MARKSEM_reg
@T(!+/KBDINT/ ready+!) KBINTSEM KBINTSEM_regiiic

c
c
c
c
c

c
c
c
c
c
c

3-81

APPENDIX F

Data Representation Catalogue

For some type classes, the Extended Computer is capable of providing more than one kind of represen-
tation. The version has no effect on the outcome of an EC operation, but some versions allow some opera-
tions to be performed more efficiently than other versions.

The following table lists the provided version names for each EC type class. When declaring a specific
type, users request a particular version by using these names.

iii
Typeclass Specific type Version names Version propertiesii

BITS Any B1
PGM Any PRO1 N/A
PTR Any P1
REAL Any R1 N/A
SEMAPHORE Any S1 N/A
TIMEINT Any T1 N/A
TIMER Any C1 N/Aiiicc

c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c

Data Representation Catalogue

APPENDIX G

Extended Computer Efficiency Guide

1. Introduction

This appendix provides information that will allow programmers of the Extended Computer [EC] write
programs with improved run-time performance, where performance is defined as an unspecified function of the
execution time and memory space required by the program. In this appendix, the words bigger and smaller,
slower and faster are adjectives describing the memory space and execution time, respectively, of programs. If
one of two programs uses less space than the other and runs no slower it is considered more efficient. Simi-
larly, if one of two programs runs faster than the other without using more space, it is considered more
efficient. In all other cases, any judgement about efficiency depends upon the availability of the various
resources.

The appendix is arranged in sections that correspond to chapters and sections in this document. The per-
formance information is usually not given in quantitative terms; rather, we describe alternative programming
situations and describe qualitatively the advantages and disadvantages of each. Where quantitative data is
given, actual numbers are represented by symbolic names, with their values given at the end of the appendix. S
and T are used to denote cost/saving of space and time, respectively, when only one is involved.

In this appendix, length refers to the !!version n characteristic!! of the type (see EC.DATA). In this
appendix, ascon is taken to include both literals and assembly-time constants.

Following the guidelines of this appendix will produce a more efficient EC program. Should the imple-
mentation of the EC change (e.g., a new host computer is acquired, or different storage schemes adopted) the
program will still be correct, although perhaps not as efficient.

The following assumptions are made:

(a) the reader is familiar with the programmer’s interface to the Extended Computer presented in this docu-
ment, including the unimplemented features specified in Appendix D;

(b) the programmer will not modify a program to gain efficiency if that modification results in the program
that no longer meets its requirements; for instance, he will not provide a process !!deadline!! greater than
that which his requirements allow, even if doing so will enhance his program’s efficiency.

USING THIS FEATURE MAY USING THIS FEATURE MAY
INCREASE EFFICIENCY DECREASE EFFICIENCY

ii
All Sectionsii

Giving all input actual parameters
to a program as ascons rather than
loadcons or variables

For all programs that take parameters
of version n, giving those
parameters as entities whose !!version
n characteristic!! is small,
especially ##entity length## or less.
ii
EC.DATA.1.3 -- Scalar literals

Efficiency Guide

Efficiency Guide

USING THIS FEATURE MAY USING THIS FEATURE MAY
INCREASE EFFICIENCY DECREASE EFFICIENCY

ii
Numeric literals of less precision

Bitstring literals of smaller !!version
1 characteristic!!, especially
##entity length## or less.
ii
EC.DATA.2.0 -- Use of of data setsii

The most efficiency from ranking data
sets will result if all entities used
within a particular code segment belong
to data sets that are ranked highest
within that code segment.
ii
EC.DATA.2.1 -- Declaration of specific typesii

None. None.
ii
EC.DATA.2.3 -- Declaration of entities and arraysii

Declaring entities or arrays of
numeric types whose ratio of range to
resolution is high (S)

Declaring entities or arrays of
bitstring types whose length is high (S)

Declaring arrays with indexset Declaring arrays with indexset
lower bound equal to 0 lower bound not zero
ii
EC.DATA.2.4 -- Operand descriptionsii

Specifying subrange information Using a pointer to point to an ASCON
for operations as often and as will negate any efficiency gained by
tightly as possible. Exceptions: range using an ASCON instead of a LOADCON
assertions need not appear for
constant operands; range assertions
need not appear for both source and
destination(s) in a +SET+ operation;
range assertions need not appear for
more than one destination in a list.

Using destination lists instead of
serial assignment

Using the NOSTORE operand form wherever
possible

Giving numeric literals as !!typed
literal!!s, when the spectype named
is one that will allow other
efficiency gains (e.g., making the
source and destination spectype the
same for transfer and numeric

3-84

Efficiency Guide

USING THIS FEATURE MAY USING THIS FEATURE MAY
INCREASE EFFICIENCY DECREASE EFFICIENCY

operations)
ii
EC.DATA.2.5 -- Transfer operationsii

Giving !!source!! and !!destination!!
of same specific type

See also ##operation cost##.
ii
EC.DATA.2.6.1 -- Numeric comparison operationsii

Giving !!user threshold!! of 0 Giving !!source!!’s of different
specific types

Giving one !!source!! as an ascon,
if its value is zero

Giving both !!source!!s and the
!!destination!! of the same specific type

See also ##operation cost##.
ii
EC.DATA.2.6.2 -- Numeric calculationsii

Making one !!source!! of +ADD+ or For +ADD+ and +SUB+, giving !!source!!’s
+SUB+ an ascon, if its value is zero of different specific types

Making both !!source!! of +ADD+ and
+MUL+ the same specific type.

Making the !!destination!! of +ADD+
or +SUB+ the same specific type as
both of the !!source!!’s

Making one !!source!! of +MUL+ an ascon
if its value is one, or a power of two

Making p2 of +DIV+ an ascon, if its Making p3 of +DIV+ $true$
value is one or a power of two

Giving p1 of +SIGN+ as an ascon

See also ##operation cost##.
ii
EC.DATA.2.6.3 -- Conversions to realsii

Giving !!radix pt ident!! as an ascon

Converting a bitstring whose length is
##entity length## or 2 × ##entity length##

See also ##operation cost##.
ii
EC.DATA.2.6.4 -- Conversions to timeints

3-85

Efficiency Guide

USING THIS FEATURE MAY USING THIS FEATURE MAY
INCREASE EFFICIENCY DECREASE EFFICIENCY

ii

See ##operation cost##.
ii
EC.DATA.2.7.1 -- Bitstring comparisonsii

See ##operation cost##.
ii
EC.DATA.2.7.2 -- Bitstring calculationsii

See ##operation cost##. Using +REPLC+ to insert a substring
into a bitstring when the value of the
substring is known at sysgen time.
Better to use +AND+ with a mask.

ii
EC.DATA.2.7.3 -- Conversions to bitstringii

Giving !!radix pt ident!! as an ascon

See also ##operation cost##.
ii
EC.DATA.2.8 -- Pointer operationsii

None.
ii
EC.IO -- Input/Output operationsii

Using an already-disabled i/o item Disabling an i/o item merely to avoid
for storage in place of declaring declaring one entity. Enabling and
entities (S). This savings may be disabling entities are expensive enough
lost if the entity would have been so that several entities must be saved
declared to be in a data set that before a net gain is realized.
is highly ranked where the i/o item
is used.

Using one of the x_success builtin
booleans, even if the statement in which it
appears is never executed. (S)

Reading and writing i/o items within
a !!par program!! if those items are
in the same Data Item Class ([REQ],
Section 2.5) except for the SIR-DOW3
class. (T)

Writing to the following groups of output
items within a !!par program!!:
//HUDAS// //HUDASL// //HUDFPM// //HUDPUC//
//HUDSCUE// //HUDVEL// //HUDWARN// (T)ii
EC.MEM -- Memory moduleii

None.

3-86

Efficiency Guide

USING THIS FEATURE MAY USING THIS FEATURE MAY
INCREASE EFFICIENCY DECREASE EFFICIENCY

ii
EC.PAR.1 -- Process mechanismsii

Making !!deadline!! and !!period!!
as large as possible

Giving !!on/off!! as an ascon, rather Having !!on/off!! for a process set to
than a variable whose value does not true longer than necessary (T)
change
ii
EC.PAR.2 -- Exclusion regionsii

Having more ordered pairs in the
exclusion relation than is required.

ii
EC.PGM.1 -- Program constructionii

Using an !!exit connector!! in which the
exits are contiguous evenly-spaced values
in the domain of the computed result
of the program. Exits that correspond
to contiguous integers are especially
efficient.

Using the null form of the !!exit connector!!

Using ++PAR++ to group input or output
operations when the items to be read or
written all inhabit the same TC-2 word
(specified in [REQ], Chapter 2).
ii
EC.PGM.2 -- Program entitiesii

Maximum efficiency will result if the most
often invoked programs are ranked higher.
ii
EC.PGM.3 -- Program invocation facilitiesii

None.
ii
EC.SMPH -- Synchronization variables and operationsii

None.
ii
EC.STATE -- Extended computer stateii

None.
ii
EC.TIMER -- Timer facilitiesii

Declaring a timer with the WRAP
attribute

3-87

Efficiency Guide

USING THIS FEATURE MAY USING THIS FEATURE MAY
INCREASE EFFICIENCY DECREASE EFFICIENCY

Letting timers with WRAP attribute reach
an upper or lower limit (T)

ii

##term## definitions

##entity length## 16

##operation cost## Given in the table below. Taking the fastest possible EC addition as a basic unit of
cost, the following operations have these relative costs. The numbers given are a
range, or a minimum.iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

Approximate costOperation relative to additionii
+SUB+ 1
+MUL+ 4
+DIV+ 4-5
numeric comparisons 1-2
+ABSV+ 1-2
+COMPLE+ 1-2
+SIGN+ 1
time-real conversions 0-5
real-time conversions 0-5
bitstring comparisons 1
bitstring calculations 1
+SHIFT+ 1-2
+REPLC+
real-bits conversions 0-5
bits-real conversions 0-5iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

3-88

EC.INDEX: Indices to the Document

1. Access programs

+ABSV+ .. 5-10

+ADD+ .. 5-10

+AND+ .. 5-13

+B_REAL_2COMP+ .. 5-14

+B_REAL_BCD+ ... 5-14

+B_REAL_POSITIVE+ .. 5-14

+B_REAL_SIGNMAG+ ... 5-14

+CAT+ ... 5-13

++CHECK++ .. 5-38

+COMPLE+ .. 5-10

++DCL_ARRAY++ .. 5-5

++DCL_DATA_SET++ .. 5-3

++DCL_ENTITY++ .. 5-4

++DCL_TYPE++ .. 5-3

++DCL_TYPE_CLASS++ .. 5-3

+DISABLE+ .. 5-23

+DIV+ ... 5-10

+DOWN+ .. 5-42

++D_PROCESS++ .. 5-28

+ENABLE+ ... 5-23

++END_REGION++ ... 5-31

+EQ+ ... 5-12

+EQ+ ... 5-9

++EXCLUSION++ ... 5-31

+GEQ+ .. 5-9

+GT+ ... 5-9

+HALT_TIMER+ ... 5-47

+LEQ+ ... 5-9

+LT+ .. 5-9

+MAX+ ... 5-9

+MIN+ ... 5-9

+MINUS+ .. 5-13

+MUL+ .. 5-10

+NAND+ ... 5-13

+NEQ+ .. 5-12

+NEQ+ .. 5-9

+NOT+ .. 5-13

+OR+ ... 5-13

+PASS+ ... 5-42

++P_PROCESS++ .. 5-28

++RANK_DATA_SET++ ... 5-4

+R_BITS_2COMP+ .. 5-11

+R_BITS_BCD+ ... 5-11

Index

Index

+R_BITS_POSITIVE+ ... 5-11

+R_BITS_SIGNMAG+ ... 5-11

++REGION++ ... 5-31

+REPLC+ .. 5-13

+R_TIME_HOUR+ ... 5-11

+R_TIME_MIN+ .. 5-11

+R_TIME_MS+ .. 5-11

+R_TIME_SEC+ ... 5-11

++SET++ ... 5-37

+SET+ ... 5-37

+SET+ ... 5-42

++SET++ ... 5-9

+SET+ ... 5-9

+S_FAIL_STATE+ ... 5-45

+SHIFT+ ... 5-13

+SIGN+ ... 5-10

+START_TIMER+ ... 5-47

+SUB+ ... 5-10

+TEST_AC+ ... 5-23

+TEST_CSA+ ... 5-23

+TEST_CSB+ ... 5-23

+TEST_DC+ ... 5-23

+TEST_DIOW1+ .. 5-23

+TEST_DIOW2+ .. 5-23

+TEST_DIOW3+ .. 5-23

+TEST_INTERRUPTS+ ... 5-28

+TEST_MEMORY+ ... 5-27

+TEST_TIMER+ ... 5-48

+TEST_XACC+ .. 5-23

+TEST_YACC+ .. 5-23

+TEST_ZACC+ .. 5-23

++TIMER_EVENTS++ .. 5-47

+T_REAL_HOUR+ .. 5-12

+T_REAL_MIN+ .. 5-12

+T_REAL_MS+ .. 5-12

+T_REAL_SEC+ .. 5-12

+UP+ ... 5-42

+XOR+ .. 5-13

2. Local type definitions

array-init .. 5-14

attribute .. 5-14

bitstring .. 5-15

boolean .. 5-15

convar .. 5-15

dataitem ... 5-25

data_set .. 5-15

data-set-reln ... 5-15

E1 ... 5-38

entrance .. 5-40

exclusion-relation .. 5-32

3-90

Index

indexset .. 5-15

integer .. 5-15

invocation-list .. 5-35

name .. 5-15

parm ... 5-40

parm-list ... 5-40

pgm .. 5-41

pgm-attribute ... 5-38

pointer .. 5-15

program .. 5-38

real ... 5-15

region ... 5-32

semaphore .. 5-43

semaphore-attribute ... 5-43

spectype ... 5-16

timeint .. 5-16

timer ... 5-48

timer-attribute .. 5-48

typeclass .. 5-16

type_list ... 5-16

version ... 5-16

In addition, Appendix E lists a set of builtin bitstring spectypes.

3. Dictionary terms

!!actual parameter!! .. 5-41

!!command!! ... 5-35

!!constructed program!! .. 5-35

!!deadline!! ... 5-29

!!destination!! ... 5-16

!!exit connector!! .. 5-35

!+failed state+! .. 5-45

!+x occurred+! .. 5-25

!+x ready+! ... 5-25

!+interrupt test result+! ... 5-29

!!interval!! ... 5-16

!!invocation!! .. 5-41

!+io test result+! ... 5-26

!!list!! .. 5-16

!+memory test result+! ... 5-27

!!name tag!! .. 5-35

!!on/off!! ... 5-30

!!par program!! ... 5-35

!!period!! ... 5-30

!+power up+! .. 5-45

!!radix pt ident!! ... 5-16

!!range!! .. 5-17

!!relation!! ... 5-17

!!resolution!! ... 5-17

!!source!! .. 5-17

!!starting event!! ... 5-30

3-91

Index

!!state!! ... 5-43

!!state(self)!! ... 5-43

!!state(waiters)!! ... 5-43

!+timer test result+! .. 5-48

!!typed literal!! .. 5-17

!!user threshold!! .. 5-17

!!version 1 characteristic!! .. 5-17

4. Undesired events

%already disabled% .. 5-26

%already enabled% ... 5-26

%%ambiguous exit connector%% ... 5-35

%%array too big%% ... 5-17

%%attribute not given%% .. 5-17

%%constant destination%% .. 5-41

%constant destination% ... 5-41

%%dest unknown%% ... 5-35

%divide by zero% .. 5-17

%%entrance incorrectly omitted%% ... 5-41

%illegal array index% ... 5-17

%%illegal exclusion%% ... 5-32

%%illegal index set%% .. 5-17

%%illegal length%% ... 5-17

%%illegal ptr target%% .. 5-17

%%illegal round/trunc%% .. 5-18

%%illegal synch%% ... 5-30

%%illegal sysgen parm%% ... 5-18

%%illegal up-down%% ... 5-43

%%improper subrange assertion%% ... 5-18

%%inappropriate attributes%% ... 5-18

%%inappropriate par list%% ... 5-35

%%inconsistent lengths%% .. 5-18

%inconsistent lengths% ... 5-18

%%inconsistent NOSTORE use%% ... 5-18

%%inconsistent pgms%% ... 5-39

%inconsistent time parms% .. 5-30

%%index not allowed%% ... 5-18

%%label name in use%% .. 5-35

%left truncation% .. 5-18

%%list mismatch%% .. 5-18

%%literal too big%% .. 5-18

%%malformed attributes%% .. 5-19

%missed deadline% ... 5-30

%%name in use%% ... 5-19

%nonexistent position% .. 5-19

%%not an entrance%% ... 5-41

%%not an exit%% ... 5-36

%%not enough memory%% .. 5-27

%%not runtime UE%% ... 5-39

%nowhere to go% .. 5-36

3-92

Index

%process completed% ... 5-30

%%range exceeded%% ... 5-19

%range exceeded% .. 5-19

%%range too great%% .. 5-19

%read-write violation% ... 5-26

%%read/write-only violation%% .. 5-26

%recursive call% ... 5-41

%%region across pgms%% ... 5-32

%%res too fine%% .. 5-19

%%success item as destination%% ... 5-26

%%syntax error%% ... 5-ii

%%sysgen exit-connector%% ... 5-36

%%sysgen name tag%% ... 5-36

%%sysgen process body%% ... 5-30

%%token too long%% ... 5-ii

%%undefined name%% .. 5-19

%%unimplemented attribute via variables%% ... 5-75

%%unimplemented binding%% .. 5-74

%%unimplemented enable/disable%% ... 5-77

%%unimplemented EXACT_REP resolution%% .. 5-76

%%unimplemented multi-exit EC access program%% .. 5-78

%%unimplemented non-const fltrec access%% .. 5-77

%%unimplemented non-constant pgm in p proc%% .. 5-74

%%unimplemented operand list%% ... 5-75

%%unimplemented pgm%% ... 5-76

%%unimplemented pgm loadcon/variable%% ... 5-78

%%unimplemented pgm ptr%% ... 5-75

%%unimplemented +R_BITS_BCD+ bits length%% .. 5-77

%%unimplemented region in ptr-invoked pgm%% .. 5-77

%%unimplemented timer ptr%% .. 5-74

%%unimplemented user pgm in PAR%% .. 5-78

%%unimplemented variable deadline%% ... 5-77

%%unimplemented variable period%% .. 5-77

%%unimplemented variable shift length%% .. 5-75

%%unimplemented variable substring%% ... 5-75

%%unimplemented variable threshold%% ... 5-76

%%unimplemented varying EXACT_REP%% .. 5-76

%uninitialized entity% .. 5-19

%%unknown initial value%% ... 5-19

%%untyped literal%% ... 5-19

%%variable parm%% .. 5-19

%%varying constant%% ... 5-20

%%version characteristic exceeded%% .. 5-20

%wrong attributes% .. 5-20

%%wrong init value size%% .. 5-20

%%wrong init value type%% .. 5-20

%%wrong num parms%% ... 5-41

%%wrong type%% .. 5-41

%wrong type% .. 5-41

%%wrong type for literal%% .. 5-20

3-93

Index

5. System generation parameters

#close down time# ... 5-46

#x length# .. 5-26

#max B1 characteristic# .. 5-20

#max C1 characteristic# .. 5-49

#max i/o time x# .. 5-26

#max nbr array elements# .. 5-20

#max R1 characteristic# .. 5-20

#max real ascon# ... 5-20

#max real loadcon# .. 5-20

#max real range# ... 5-20

#max semaphore ascon# .. 5-43

#max semaphore loadcon# .. 5-43

#max semaphore range# .. 5-43

#max static timer error# ... 5-48

#max T1 characteristic# ... 5-20

#max timeint ascon# .. 5-20

#max timeint loadcon# .. 5-20

#max timeint range# .. 5-20

#max timer error rate# ... 5-49

#max timer range# ... 5-49

#max token length# ... 5-21

#min real resolution# ... 5-21

#min timeint resolution# ... 5-21

#min timer resolution# .. 5-49

#nbr fltrec elements# ... 5-26

6. Built-in objects

DIV_FAIL (program pointer) .. 5-11

EC access programs (program) .. 5-38

EC input/output data items (bitstring) ... 5-25

ECFAILED (semaphore) ... 5-45

ECFAILED_reg (region) ... 5-45

ECPOWUP (semaphore) ... 5-45

ECPOWUP_reg (region) ... 5-45

ENBLSEM (semaphore) ... 5-81

ENBLSEM_reg (region) ... 5-81

ENTSWSEM (semaphore) .. 5-81

ENTSWSEM_reg (region) .. 5-81

p1_reg, for timer p1 (region) ... 5-48

KBINTSEM (semaphore) .. 5-81

KBINTSEM_reg (region) .. 5-81

MARKSEM (semaphore) .. 5-81

MARKSEM_reg (region) .. 5-81

NEXT_PERIOD (semaphore) ... 5-29

Undesired events (program pointer) .. 5-38

x_SUCCESS for data item x (boolean) ... 5-25

3-94

Index

7. Events signalled by incrementing a semaphore

@T(!+/ENTERSW/ occurred+!) ... 5-81

@T(!+failed state+!) .. 5-45

@T(!+/KBDENBL/ occurred+!) ... 5-81

@T(!+/KBDINT/ ready+!) .. 5-81

@T(!+/MARKSW/ occurred+!) .. 5-81

@T(!+power up+!) .. 5-45

In addition, users may request timer-related events by supplying their own semaphores. See EC.TIMER

8. Reserved words

ARRAY ... 5-14

ASCON ... 5-15

ATTR ... 5-6

B1 .. 5-82

BITS .. 5-16

BOOLEAN .. 5-16

C1 .. 5-82

DEREF .. 5-7

DOWN ... 5-48

EL .. 5-6

ENTRANCE1 .. 5-38

EXACT_REP .. 5-14

EXIT1 .. 5-38

$false$.. 5-15

FLOOR .. 5-7

GE .. 5-16

GT .. 5-16

HALT .. 5-48

LE .. 5-16

LIM .. 5-16

LIME ... 5-16

LIT ... 5-6

LOADCON .. 5-15

LT .. 5-16

NOSTORE ... 5-8

P1 ... 5-82

PAR ... 5-35

PGM .. 5-16

PGM .. 5-35

PRO1 ... 5-82

PTR .. 5-16

R1 .. 5-82

RANGE ... 5-7

REAL ... 5-16

REF .. 5-15

ROUND ... 5-7

RPT .. 5-16

S1 ... 5-82

3-95

Index

SCALAR ... 5-14

SEMAPHORE ... 5-16

T1 ... 5-82

TIMEINT ... 5-16

TIMER ... 5-16

$true$... 5-15

TRUNC ... 5-7

UNDEF .. 5-4

UP .. 5-48

VAR ... 5-15

WRAP ... 5-48

3-96

References

[ADP] Brooks, Iverson; Automatic Data Processing, System/360 Edition, Wiley, 1969.

[ADT] Clements, Faulk, Parnas; Interface Specifications for the SCR (A-7E) Application Data Types
Module, NRL Report 8734, 23 August 1983.

[APC] Faulk, S.; ‘‘Pseudo-Code Language for the A-7E OFP’’, internal memorandum, April 1982

[BELP73] Belpaire, Wilmotte; ‘‘A Semantic Approach to the Theory of Parallel Processes’’; in International
Computing Symposium 1973.

[DIJK68] Dijkstra, E.; ‘‘Cooperating Sequential Processes’’, in Programming Languages, ed. F. Genuys;
Academic Press, 1968; pp.43-112.

[DIM] Parker, Heninger, Parnas, Shore; Abstract Interface Specifications for the A-7E Device Interface
Module, NRL Memorandum Report 4385, November, 1980.

[REED79] Reed, Kanodia; ‘‘Synchronization with Eventcounts and Sequencers’’; Comm. ACM, v. 22, no. 2
(1979).

[REQ] Heninger, Kallander, Parnas, Shore; Software Requirements for the A-7E Aircraft, NRL
Memorandum Report 3876; Nov 1978.

[SO] Clements, Parker, Parnas, Shore, Britton; A Standard Organization for Specifying Abstract Inter-
faces, NRL Report 8815, June 1984.

[TRACE] Parnas, "Trace Specifications for D-Operations", NRL Technical Memorandum 7590-000:DP, to
be published.

[TT] Alspaugh, Clements, Mullen, Parnas, Weiss; ‘‘Interface Specifications for the SCR (A-7) Transla-
tor Tools Module’’, NRL Memorandum Report in preparation, draft 22 October 1984.

[WUER76] Wuerges, Parnas; ‘‘Response to Undesired Events in Software Systems’’; Proc. 2nd Intl. Conf.
Softare Eng., pp. 437-446; 1976.

References

Acknowledgements

The authors gratefully acknowledge the hard work and careful reviews provided by the following people:

Naval Weapons Center, China Lake, CA:

Jack Basden
Richard Fryer
Sandra Fryer
Dawn Janney
Ray Martinusen
Jo Miller
Lee Thomson
Robert Westbrook
Richard Wolff
Janice Zenor

Vought Corporation, Dallas, TX:

Glenn Cooper
Dwight Hill

USAF A-7D/K OFP Detachment, Tucson, AZ:

Mark Jacobson
Richard Breisch

Bell Telephone Laboratories, Columbus, OH:

Don Utter

Grumman Aerospace Corp., Bethpage, NY:

Stephanie White

Computer Science and Systems Branch, Naval Research Laboratory,Washington, DC:

Tom Alspaugh
Stuart Faulk
Bruce Labaw
Larry Morell
Dr. John Shore

In addition, special thanks go to Preston Mullen, who contributed significantly to the design of several of
the interfaces contained in this document.

(end)

Acknowledgements

Table of Contents

Chapter 1 EC.DATA: Data Manipulation Facilities ... 3-1
Chapter 2 EC.IO: Input/Output ... 3-22
Chapter 3 EC.MEM: Memory Module ... 3-27
Chapter 4 EC.PAR.1: Process Mechanisms .. 3-28
Chapter 5 EC.PAR.2: Exclusion Regions ... 3-31
Chapter 6 EC.PGM.1: Program Construction ... 3-33
Chapter 7 EC.PGM.2: Program Entities ... 3-37
Chapter 8 EC.PGM.3: Program Invocation .. 3-40
Chapter 9 EC.SMPH: Synchronization Variables and Operations ... 3-42
Chapter 10 EC.STATE: Extended Computer State .. 3-45
Chapter 11 EC.TIMER: Timer Facilities .. 3-47
Appendix A Design Issues ... 3-50
Appendix B Implementation Notes .. 3-66
Appendix C Assumptions Lists .. 3-67
Appendix D Unimplemented Extended Computer Features ... 3-74
Appendix E Input/Output Data Item Names .. 3-79
Appendix F Data Representation Catalogue .. 3-82
Appendix G Extended Computer Efficiency Guide ... 3-83

